51nod1222 最小公倍数计数
输入数据包括2个数:a, b,中间用空格分隔(1 <= a <= b <= 10^11)。
输出最小公倍数在这个区间的不同二元组的数量。
4 6
10
数学问题 莫比乌斯反演
请开始你的反演!
设:
$$ans(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
那么 $ans(b)-ans(a-1)$ 就是最终答案
尝试化简上面的式子:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
$$\sum_{d=1}^{n} \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*j<=\frac{n}{d}] [gcd(i,j)==1]$$
$$\sum_{d=1}^{n} \sum_{k=1}^{\frac{n}{d}} \mu(k) \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*k*j*k<=\frac{n}{d}] $$
$$\sum_{k=1}^{n} \mu(k) \sum_{d=1}^{\frac{n}{k}} \sum_{i=1}^{\frac{n}{dk}} \sum_{j=1}^{\frac{n}{dk}} [i*j*d<=\frac{n}{k^2}] $$
显然d和k值大到一定程度,最后面就是0了,所以我们可以缩小求和上界:
$$\sum_{k=1}^{\sqrt n} \mu(k) \sum_{d=1}^{\frac{n}{k^2}} \sum_{i=1}^{\frac{n}{dk^2}} \sum_{j=1}^{\frac{n}{dk^2}} [i*j*d<=\frac{n}{k^2}] $$
这个范围很友好,我们可以枚举$\mu(k)$,求满足条件的i j d三元组数量。
需要求的三元组是无序的,为了不重不漏地计数,我们可以分别求出有序(单调上升)的三元组数量,对于其中三个数各不同的、有两个数相同的、三个数都相同的分别计数,然后乘以对应的组合数即可。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
int pri[mxn],mu[mxn],cnt=;
bool vis[mxn];
void init(){
mu[]=;
for(int i=;i<mxn;i++){
if(!vis[i]){
pri[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt && pri[j]*i<mxn;j++){
vis[pri[j]*i]=;
if(i%pri[j]==){mu[pri[j]*i]=;break;}
mu[pri[j]*i]=-mu[i];
}
}
return;
}
LL calc(LL n){
if(!n)return ;
LL i,j,k,ed=floor(sqrt(n));
LL res=,tmp=;
for(k=;k<=ed;k++){
if(mu[k]){
tmp=;
LL ED=n/(k*k);
for(i=;i*i*i<=ED;i++){
for(j=i+;j*j*i<=ED;j++)
tmp+=(ED/(i*j)-j)*+;
tmp+=(ED/(i*i)-i)*;
tmp++;
}
res+=mu[k]*tmp;
}
}
return (res+n)/;
}
LL a,b;
int main(){
init();
scanf("%lld%lld",&a,&b);
printf("%lld\n",calc(b)-calc(a-));
return ;
}
51nod1222 最小公倍数计数的更多相关文章
- 51Nod1222 最小公倍数计数 数论 Min_25 筛
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1222.html 题意 给定 $a,b$, 求 $$\sum_{n=a}^b \sum_{i=1}^n ...
- 51nod1222最小公倍数计数
51nod1222 http://210.33.19.103/contest/1113/problem/2 同学的神仙做法: 首先考虑先去掉X<=Y的限制,也就是先计算满足要求的任意有序pair ...
- 51nod1222 最小公倍数计数 莫比乌斯反演 数学
求$\sum_{i = 1}^{n} \sum_{j = 1}^{i} [lcm(i, j) \le n]$因为这样不好求,我们改成求$\sum_{i = 1}^{n} \sum_{j = 1}^{n ...
- [51nod1222] 最小公倍数计数(莫比乌斯反演)
题面 传送门 题解 我此生可能注定要和反演过不去了--死都看不出来为啥它会突然繁衍反演起来啊-- 设\(f(n)=\sum_{i=1}^n\sum_{j=1}^n[{ij\over\gcd(i,j)} ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)
题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑bi=1∑kj ...
- 【51Nod 1222】最小公倍数计数
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去 ...
- 51nod 1222 最小公倍数计数【莫比乌斯反演】
参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...
随机推荐
- 关于封装了gevent的request grequest库的使用与讨论
最近迷上了gevent所以研究很多gevent相关的东西. 但是我现在不想写相关gevent和greenlet的东西.因为这一块内容实在太多太大太杂,我自己也还没有完全弄明白,所以等我完全搞清楚测试也 ...
- loadrunner基础学习笔记二
virtual user generator(vugen) 在测试环境中,loadrunner在物理计算机上使用vuser代替实际用户.vuser以一种可重复.可预测的方式模拟典型用户的操作,对系统施 ...
- 开启打印服务Print Spooler
windows系统需要开启Print Spooler才能进行打印,如果不开启,可能造成很多现象和原因,比如windows打印机队列的打印机全部消失,用Lodop打印的时候提示"Printer ...
- js Dom 编程
1. 节点及其类型: 1). 元素节点 2). 属性节点: 元素的属性, 可以直接通过属性的方式来操作. 3). 文本节点: 是元素节点的子节点, 其内容为文本. 2. 在 html 文档的 ...
- JS中var声明与function声明两种函数声明方式的区别
JS中常见的两种函数声明(statement)方式有这两种: // 函数表达式(function expression) var h = function() { // h } // 函数声明(fun ...
- BZOJ2434[Noi2011]阿狸的打字机——AC自动机+dfs序+树状数组
题目描述 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小 ...
- Java 8 forEach简单例子(转载)
forEach and Map 1.1 通常这样遍历一个Map Map<String, Integer> items = new HashMap<>(); items.put( ...
- day26 多继承
class A(object): def test(self): print('from A') class B(A): def test(self): print('from B') class C ...
- 洛谷 P3225 [HNOI2012]矿场搭建 解题报告
P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...
- Android 屏幕手势滑动中onFling()函数的技巧分析
关于如何处理手势操作以及那四个基本固定的顺序我就不讲解了,这里直接跳到我们获得瞬间滑动后回调onFling()这个抽象函数时,应该如何根据参数比较准确的判断滑动方向.如果你没有前面的基础知识,你可以去 ...