题解:

80分做法还是听简单的

对于非树边枚举一下端点状态

然而我也不知道为什么就多t了一个点

具体实现上

最暴力的是3^n次 但是我们可以发现对于i不取,j取 i不取,j不取是可以等效成i不取,j没有限制,这样是2^n

或者直接容斥一下搞i取j取 这样C(n,1)+C(n,2)...=2^n一样的吧

100pts应该是虚树处理一下系数吧

代码:

#include <bits/stdc++.h>
using namespace std;
#define N 300000
#define rg register
#define mo 998244353
#define ll long long
struct re{
int a,b;
}a[N],ts[];
const int n2=1e7;
int head[N],l2,l,v[N],n,m,hash[n2];
ll dp[N][],ans;
bool f[N],ff[N];
inline void arr(int x,int y)
{
a[++l].a=head[x];
a[l].b=y;
head[x]=l;
}
inline void dfs(int x,int y)
{
rg int u=head[x];
f[x]=;
while (u)
{
rg int v=a[u].b;
if (u!=y)
{
if (f[v])
{
if (!ff[u])
{
ts[++l2].a=a[u].b;
ts[l2].b=x;
ff[u]=;
ff[u%?u+:u-]=;
}
} else dfs(v,u%?u+:u-);
}
u=a[u].a;
}
}
inline void dfs3(rg int x,rg int y)
{
rg int u=head[x];
dp[x][]=; dp[x][]=;
if (v[x]==) dp[x][]=;
if (v[x]==-) dp[x][]=;
while (u)
{
rg int v=a[u].b;
if (u!=y&&!ff[u])
{
dfs3(v,u%?u+:u-);
dp[x][]*=dp[v][];
dp[x][]%=mo;
dp[x][]*=(dp[v][]+dp[v][]);
dp[x][]%=mo;
}
u=a[u].a;
}
}
const int mo1=9e6+;
inline void dfs2(rg int now)
{
if (now==)
{
memset(dp,,sizeof(dp));
dfs3(,);
ans+=dp[][]+dp[][];
ans%=mo;
return;
}
rg int x=ts[now].a,y=ts[now].b;
rg int tmp1=v[x],tmp2=v[y];
if (v[x]!=&&v[y]!=-)
{
v[x]=-; v[y]=; dfs2(now-); v[x]=tmp1; v[y]=tmp2;
}
if (v[y]!=)
{
v[y]=-; dfs2(now-); v[y]=tmp2;
}
}
int main()
{
freopen("noi.in","r",stdin);
freopen("noi.out","w",stdout);
std::ios::sync_with_stdio(false);
cin>>n>>m;
int x,y;
for (rg int i=;i<=m;i++)
{
cin>>x>>y;
arr(x,y); arr(y,x);
}
dfs(,);
dfs2(l2);
cout<<ans<<endl;
return ;
}

#10 //I [HNOI/AHOI2018]毒瘤的更多相关文章

  1. Luogu P4426 [HNOI/AHOI2018]毒瘤

    题目 神仙题. 首先我们可以把题意转化为图的独立集计数.显然这个东西是个NP-Hard的. 然后我们可以注意到\(m\le n+10\),也就是说最多有\(11\)条非树边. 我们现在先考虑一下,树上 ...

  2. 题解 [HNOI/AHOI2018]毒瘤

    题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条边的无向图,问有多少个点集满足点集中任意两点均不存在边相连. \(n\le 10^5,m-n\le 10\),答案对 \(9982443 ...

  3. 洛谷 P4426 - [HNOI/AHOI2018]毒瘤(虚树+dp)

    题面传送门 神仙虚树题. 首先考虑最 trival 的情况:\(m=n-1\),也就是一棵树的情况.这个我相信刚学树形 \(dp\) 的都能够秒掉罢(确信).直接设 \(dp_{i,0/1}\) 在表 ...

  4. [HNOI/AHOI2018]毒瘤

    题目描述 https://www.lydsy.com/JudgeOnline/upload/201804/%E6%B9%96%E5%8D%97%E4%B8%80%E8%AF%95%E8%AF%95%E ...

  5. P4426 [HNOI/AHOI2018]毒瘤

    挺不错的一个题. 题意即为求一个图的独立集方案数. 如果原图是一棵树,可以直接大力f[x][0/1]来dp. 由于非树边很少,考虑2^11容斥,强制某些点必选,然后再O(n)dp,这样应该过不了. 发 ...

  6. 【LG4437】[HNOI/AHOI2018]排列

    [LG4437][HNOI/AHOI2018]排列 题面 洛谷 题解 题面里这个毒瘤的东西我们转化一下: 对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\). ...

  7. [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)

    P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...

  8. [HNOI/AHOI2018]转盘(线段树优化单调)

    gugu  bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...

  9. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

随机推荐

  1. 复杂HTML解析

    面对页面解析难题时候,需要注意问题: 1.寻找“打印次页”的链接,或者看看网站有没有HTML样式更友好的移动版(把自己的请求头设置成处于移动设备的状态,然后接收网站移动版). 2.寻找隐藏在JavaS ...

  2. Winfrom多文档界面实现

    Winfrom多文档界面实现 闲来无事,研究了下比较常用的多文档界面风格,网上找了好多例子,最终实现.记录一下 废话不多说,先上个效果: 默认打开我的桌面,首页不允许关闭,xtraTabPage动态添 ...

  3. Linux - find 查找

    # linux文件无创建时间 # Access 使用时间 # Modify 内容修改时间 # Change 状态改变时间(权限.属主) # 时间默认以24小时为单位,当前时间到向前24小时为0天,向前 ...

  4. D - Maximizing Advertising

    题目链接:https://cn.vjudge.net/contest/250168#problem/D 题目大意:给你一些点的坐标,这些点属于两个帮派,让你将这些点分进两个不能重叠的矩形中,问你最多两 ...

  5. 2018-2019-2 网络对抗技术 20165230 Exp4 恶意代码分析

    目录 1.实验内容 2.实验过程 任务一:系统运行监控 每隔五分钟记录自己的电脑,并进行分析 安装配置sysinternals里的sysmon工具 任务二:恶意软件分析 静态分析工具 ViruScan ...

  6. maven的动态打包功能

    对于maven而言,打包是其一个非常重要的功能,不仅仅是简单的编译打包的概念,其还通过各种插件支持各种灵活的打包策略.现举一个例子讲解如何动态实现一个web项目的打包: 需求: 现需要对一个web项目 ...

  7. win10安装virtualBox创建CentOS6.5虚拟机

    1.安装virtualBox 1.1.下载安装包,安装 搜索一下,或者去 VirtualBox官网下载一个. 下载第一个,兼容64,32位. 2.创建64位虚拟机 2.1.解决无法创建64位的问题 2 ...

  8. python脚本发送邮件

    #!/usr/bin/python #_*_ coding:utf-8 _*_ from email.MIMEText import MIMEText from email.MIMEMultipart ...

  9. mysql caching_sha2_password异常分析

    使用navicat连接mysql报错 解决办法: 通过命令行登录mysql后,输入: alter user 'root'@'localhost' IDENTIFIED WITH mysql_nativ ...

  10. nginx转发

    1.下载nginx:官网(http://nginx.org)右侧下载,进入下载页,选在需要下载的版本 2.将压缩包解压到指定的目录下 (D:\Environments\nginx-1.8.0) 3.启 ...