【BZOJ3244】【UOJ#122】【NOI2013]树的计数
NOI都是酱的题怎么玩啊,哇.jpg
原题:
我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序。两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同,例如下面两棵树的DFS序都是1 2 4 5 3,BFS序都是1 2 3 4 5
现给定一个DFS序和BFS序,我们想要知道,符合条件的有根树中,树的高度的平均值。即,假如共有K棵不同的有根树具有这组DFS序和BFS序,且他们的高度分别是h1,h2,...,hk,那么请你输出
(h1+h2..+hk)/k
2≤n≤200000
恩开始想了一下一点思路都没有。。。。。。。。。好吧我应该想一想暴力的
直接看题解了,这里只解释题解
首先先把bfs调成1,2,3……n的形式,dfs跟着调方便讨论
然后对于b=a+1
因为bfs是按层推,所以b要么跟a一层,要么比a多一层,即height[b]=height[a]+1或height[b]=height[a],如果在同一层则b一定在a的后面
如果dfs[a]>dfs[b],表示dfs的时候是先到a再到b,那么a和b就不能在同一层,则height[b]=height[a]+1
如果dfs[a]<dfs[b],有两种情况,dfs[b]!=dfs[a]+1,这个时候显然只能是ab在同一层且a在b前面,注意因为bfs[b]=bfs[a]+1(注意bfs[a]=a)
如果dfs[b]=dfs[a]+1,还是有两种情况,菊花或链,如果菊花就height[b]=height[a],如果链就height[b]=height[a]+1
尽管这种情况有机会是的height[b]大于height[a],但是这个未必会对答案造成影响
啥时候会造成影响呢,首先height[b]=height[a]+1,然后b是这一层最后一个点,这个时候对答案就贡献了
怎么判断这种情况?当剩下的点都是b的子树的时候就是这种情况,如果用flag[i]表示i有没有被遍历到,计一个r表示从最右边起最多连续多少个flag[i]==1,l表示从左起最多连续多少个flag[i]==1,那么当i-1=n-r+1-l,即左边一截全是1,右边一截全是1,中间全是0的时候就表示剩下的点全是b的子树
因为还有height[b]=height[a]的情况而且这种情况对于后面没有影响,因此此时给答案贡献的期望值为0.5
为啥height[b]=height[a]+1会对答案有贡献呢,因为b=a+1,前面是沿着bfs序一层一层推的,结合上面的性质就容易立即如果对答案贡献
这种题完全没思路啊,NOI怎么玩啊QAQ
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
int n,a[],b[];
int rvs[];
bool flg[];
int main(){freopen("ddd.in","r",stdin);
cin>>n;
for(int i=;i<=n;++i) a[i]=rd(),rvs[a[i]]=i;
for(int i=;i<=n;++i) b[i]=rvs[rd()];
int l=,r=n+; double ans=;
flg[]=flg[]=true;
for(int i=;i<=n;++i){
if(b[i-]>b[i]) ++ans;
else if(b[i]==b[i-]+) ans+=(n-r++l==i-)*0.5;
flg[b[i]]=true;
while((l<r) & flg[r-]) --r;
while((l<r) & flg[l+]) ++l;
}
printf("%.3lf\n%.3lf\n%.3lf\n",ans-0.001,ans,ans+0.001);
return ;
}
【BZOJ3244】【UOJ#122】【NOI2013]树的计数的更多相关文章
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- BZOJ3244 NOI2013树的计数(概率期望)
容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...
- [BZOJ3244][NOI2013]树的计数
这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...
- [bzoj3244][noi2013]树的计数 题解
UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...
- BZOJ3244/UOJ122 [Noi2013]树的计数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】
题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...
- [bzoj3244] [洛谷P1232] [Noi2013] 树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- 【uoj122】 NOI2013—树的计数
http://uoj.ac/problem/122 (题目链接) 题意 给出一棵树的dfs序和bfs序,保证一定可以构成一棵树.问构成的树的期望深度. Solution 这是一个悲伤的故事,我YY的东 ...
- 3244: [Noi2013]树的计数 - BZOJ
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
随机推荐
- day23 模块02
核能来袭--模块 2 1.nametuple() 2.os模块 3.sys模块(重点) 4.序列化 (四个函数) 5.pickle(重点) 6.json(重点中的重点) 1.nametuple() 命 ...
- swiftlint 你所要知道的所有!!
swiftin Should the opening brace of a function or control flow statement be on a new line or not ?:) ...
- :装饰者模式--Beverage
#ifndef __BEVERAGE_H__ #define __BEVERAGE_H__ #include <string> using namespace std; class Bev ...
- 依赖倒置(DIP)、控制反转(IOC)和依赖注入(DI)
原文: https://blog.csdn.net/briblue/article/details/75093382 写这篇文章的原因是这两天在编写关于 Dagger2 主题的博文时,花了大量的精力来 ...
- linux 删除日志
https://jingyan.baidu.com/album/c1a3101e73129ade656deb9d.html?picindex=2 里面的 ls -s 可以看到目录 https://zh ...
- JavaScript+CSS+DIV实现表格变色示例
<!DOCTYPE html> <html> <head> <title>colortable.html</title> <scrip ...
- DevExpress ASP.NET Bootstrap Controls v18.2新功能详解(二)
行业领先的.NET界面控件2018年第二次重大更新——DevExpress v18.2日前正式发布,本站将以连载的形式为大家介绍新版本新功能.本文将介绍了DevExpress ASP.NET Boot ...
- Linux文件系统命令 touch/rm
命令:touch 功能:创建文件,后接相对路径或者绝对路径 eg: touch ./ren/jin/gui.txt 命令:rm 功能:删除文件,当删除的是目录的时候要加-R参数进行递归删除. eg: ...
- el-container 实践上的布局问题
当自己利用element-ui上面的例子来实现整体布局的时候, 就是自己分开成单独的vue组件时,发现布局是不对的,效果是这样的: 代码是这样的,代码一模一样,只是拆开了各个组件,如下图: 后来发现是 ...
- jmeter中测试接口
本文主要介绍在jmeter中测试接口:主要从以下几个方面进行说明: 1.jmeter简介 2.jmeter怎么做接口测试 3.jmeter进行参数化的几种形式 4.jmeter中处理乱码方法 5.jm ...