Hadoop YARN同时支持内存和CPU两种资源的调度,本文介绍如何配置YARN对内存和CPU的使用。

YARN作为一个资源调度器,应该考虑到集群里面每一台机子的计算资源,然后根据application申请的资源进行分配Container。Container是YARN里面资源分配的基本单位,具有一定的内存以及CPU资源。

在YARN集群中,平衡内存、CPU、磁盘的资源的很重要的,根据经验,每两个container使用一块磁盘以及一个CPU核的时候可以使集群的资源得到一个比较好的利用。

内存配置

关于内存相关的配置可以参考hortonwork公司的文档Determine HDP Memory Configuration Settings来配置你的集群。

YARN以及MAPREDUCE所有可用的内存资源应该要除去系统运行需要的以及其他的hadoop的一些程序,总共保留的内存=系统内存+HBASE内存。

可以参考下面的表格确定应该保留的内存:

每台机子内存 系统需要的内存 HBase需要的内存
4GB 1GB 1GB
8GB 2GB 1GB
16GB 2GB 2GB
24GB 4GB 4GB
48GB 6GB 8GB
64GB 8GB 8GB
72GB 8GB 8GB
96GB 12GB 16GB
128GB 24GB 24GB
255GB 32GB 32GB
512GB 64GB 64GB

计算每台机子最多可以拥有多少个container,可以使用下面的公式:

containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)

说明:

  • CORES为机器CPU核数
  • DISKS为机器上挂载的磁盘个数
  • Total available RAM为机器总内存
  • MIN_CONTAINER_SIZE是指container最小的容量大小,这需要根据具体情况去设置,可以参考下面的表格:
每台机子可用的RAM container最小值
小于4GB 256MB
4GB到8GB之间 512MB
8GB到24GB之间 1024MB
大于24GB 2048MB

每个container的平均使用内存大小计算方式为:

RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))

通过上面的计算,YARN以及MAPREDUCE可以这样配置:

配置文件 配置设置 默认值 计算值
yarn-site.xml yarn.nodemanager.resource.memory-mb 8192 MB = containers * RAM-per-container
yarn-site.xml yarn.scheduler.minimum-allocation-mb 1024MB = RAM-per-container
yarn-site.xml yarn.scheduler.maximum-allocation-mb 8192 MB = containers * RAM-per-container
yarn-site.xml (check) yarn.app.mapreduce.am.resource.mb 1536 MB = 2 * RAM-per-container
yarn-site.xml (check) yarn.app.mapreduce.am.command-opts -Xmx1024m = 0.8 * 2 * RAM-per-container
mapred-site.xml mapreduce.map.memory.mb 1024 MB = RAM-per-container
mapred-site.xml mapreduce.reduce.memory.mb 1024 MB = 2 * RAM-per-container
mapred-site.xml mapreduce.map.java.opts   = 0.8 * RAM-per-container
mapred-site.xml mapreduce.reduce.java.opts   = 0.8 * 2 * RAM-per-container

举个例子:对于128G内存、32核CPU的机器,挂载了7个磁盘,根据上面的说明,系统保留内存为24G,不适应HBase情况下,系统剩余可用内存为104G,计算containers值如下:

containers = min (2*32, 1.8* 7 , (128-24)/2) = min (64, 12.6 , 51) = 13

计算RAM-per-container值如下:

RAM-per-container = max (2, (124-24)/13) = max (2, 8) = 8

你也可以使用脚本yarn-utils.py来计算上面的值:

#!/usr/bin/env python
import optparse
from pprint import pprint
import logging
import sys
import math
import ast ''' Reserved for OS + DN + NM, Map: Memory => Reservation '''
reservedStack = { 4:1, 8:2, 16:2, 24:4, 48:6, 64:8, 72:8, 96:12,
128:24, 256:32, 512:64}
''' Reserved for HBase. Map: Memory => Reservation ''' reservedHBase = {4:1, 8:1, 16:2, 24:4, 48:8, 64:8, 72:8, 96:16,
128:24, 256:32, 512:64}
GB = 1024 def getMinContainerSize(memory):
if (memory <= 4):
return 256
elif (memory <= 8):
return 512
elif (memory <= 24):
return 1024
else:
return 2048
pass def getReservedStackMemory(memory):
if (reservedStack.has_key(memory)):
return reservedStack[memory]
if (memory <= 4):
ret = 1
elif (memory >= 512):
ret = 64
else:
ret = 1
return ret def getReservedHBaseMem(memory):
if (reservedHBase.has_key(memory)):
return reservedHBase[memory]
if (memory <= 4):
ret = 1
elif (memory >= 512):
ret = 64
else:
ret = 2
return ret def main():
log = logging.getLogger(__name__)
out_hdlr = logging.StreamHandler(sys.stdout)
out_hdlr.setFormatter(logging.Formatter(' %(message)s'))
out_hdlr.setLevel(logging.INFO)
log.addHandler(out_hdlr)
log.setLevel(logging.INFO)
parser = optparse.OptionParser()
memory = 0
cores = 0
disks = 0
hbaseEnabled = True
parser.add_option('-c', '--cores', default = 16,
help = 'Number of cores on each host')
parser.add_option('-m', '--memory', default = 64,
help = 'Amount of Memory on each host in GB')
parser.add_option('-d', '--disks', default = 4,
help = 'Number of disks on each host')
parser.add_option('-k', '--hbase', default = "True",
help = 'True if HBase is installed, False is not')
(options, args) = parser.parse_args() cores = int (options.cores)
memory = int (options.memory)
disks = int (options.disks)
hbaseEnabled = ast.literal_eval(options.hbase) log.info("Using cores=" + str(cores) + " memory=" + str(memory) + "GB" +
" disks=" + str(disks) + " hbase=" + str(hbaseEnabled))
minContainerSize = getMinContainerSize(memory)
reservedStackMemory = getReservedStackMemory(memory)
reservedHBaseMemory = 0
if (hbaseEnabled):
reservedHBaseMemory = getReservedHBaseMem(memory)
reservedMem = reservedStackMemory + reservedHBaseMemory
usableMem = memory - reservedMem
memory -= (reservedMem)
if (memory < 2):
memory = 2
reservedMem = max(0, memory - reservedMem) memory *= GB containers = int (min(2 * cores,
min(math.ceil(1.8 * float(disks)),
memory/minContainerSize)))
if (containers <= 2):
containers = 3 log.info("Profile: cores=" + str(cores) + " memory=" + str(memory) + "MB"
+ " reserved=" + str(reservedMem) + "GB" + " usableMem="
+ str(usableMem) + "GB" + " disks=" + str(disks)) container_ram = abs(memory/containers)
if (container_ram > GB):
container_ram = int(math.floor(container_ram / 512)) * 512
log.info("Num Container=" + str(containers))
log.info("Container Ram=" + str(container_ram) + "MB")
log.info("Used Ram=" + str(int (containers*container_ram/float(GB))) + "GB")
log.info("Unused Ram=" + str(reservedMem) + "GB")
log.info("yarn.scheduler.minimum-allocation-mb=" + str(container_ram))
log.info("yarn.scheduler.maximum-allocation-mb=" + str(containers*container_ram))
log.info("yarn.nodemanager.resource.memory-mb=" + str(containers*container_ram))
map_memory = container_ram
reduce_memory = 2*container_ram if (container_ram <= 2048) else container_ram
am_memory = max(map_memory, reduce_memory)
log.info("mapreduce.map.memory.mb=" + str(map_memory))
log.info("mapreduce.map.java.opts=-Xmx" + str(int(0.8 * map_memory)) +"m")
log.info("mapreduce.reduce.memory.mb=" + str(reduce_memory))
log.info("mapreduce.reduce.java.opts=-Xmx" + str(int(0.8 * reduce_memory)) + "m")
log.info("yarn.app.mapreduce.am.resource.mb=" + str(am_memory))
log.info("yarn.app.mapreduce.am.command-opts=-Xmx" + str(int(0.8*am_memory)) + "m")
log.info("mapreduce.task.io.sort.mb=" + str(int(0.4 * map_memory)))
pass if __name__ == '__main__':
try:
main()
except(KeyboardInterrupt, EOFError):
print("\nAborting ... Keyboard Interrupt.")
sys.exit(1)

执行下面命令:

python yarn-utils.py -c 32 -m 128 -d 7 -k False

返回结果如下:

 Using cores=32 memory=128GB disks=7 hbase=False
Profile: cores=32 memory=106496MB reserved=24GB usableMem=104GB disks=7
Num Container=13
Container Ram=8192MB
Used Ram=104GB
Unused Ram=24GB
yarn.scheduler.minimum-allocation-mb=8192
yarn.scheduler.maximum-allocation-mb=106496
yarn.nodemanager.resource.memory-mb=106496
mapreduce.map.memory.mb=8192
mapreduce.map.java.opts=-Xmx6553m
mapreduce.reduce.memory.mb=8192
mapreduce.reduce.java.opts=-Xmx6553m
yarn.app.mapreduce.am.resource.mb=8192
yarn.app.mapreduce.am.command-opts=-Xmx6553m
mapreduce.task.io.sort.mb=3276

这样的话,每个container内存为8G,似乎有点多,我更愿意根据集群使用情况任务将其调整为2G内存,则集群中下面的参数配置值如下:

配置文件 配置设置 计算值
yarn-site.xml yarn.nodemanager.resource.memory-mb = 52 * 2 =104 G
yarn-site.xml yarn.scheduler.minimum-allocation-mb = 2G
yarn-site.xml yarn.scheduler.maximum-allocation-mb = 52 * 2 = 104G
yarn-site.xml (check) yarn.app.mapreduce.am.resource.mb = 2 * 2=4G
yarn-site.xml (check) yarn.app.mapreduce.am.command-opts = 0.8 * 2 * 2=3.2G
mapred-site.xml mapreduce.map.memory.mb = 2G
mapred-site.xml mapreduce.reduce.memory.mb = 2 * 2=4G
mapred-site.xml mapreduce.map.java.opts = 0.8 * 2=1.6G
mapred-site.xml mapreduce.reduce.java.opts = 0.8 * 2 * 2=3.2G

对应的xml配置为:

<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx3276m</value>
</property>

另外,还有一下几个参数:

  • yarn.nodemanager.vmem-pmem-ratio:任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。
  • yarn.nodemanager.pmem-check-enabled:是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
  • yarn.nodemanager.vmem-pmem-ratio:是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

第一个参数的意思是当一个map任务总共分配的物理内存为2G的时候,该任务的container最多内分配的堆内存为1.6G,可以分配的虚拟内存上限为2*2.1=4.2G。另外,照这样算下去,每个节点上YARN可以启动的Map数为104/2=52个。

CPU配置

YARN中目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指定每个任务需要的虚拟CPU个数。

在YARN中,CPU相关配置参数如下:

  • yarn.nodemanager.resource.cpu-vcores:表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。
  • yarn.scheduler.minimum-allocation-vcores:单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。
  • yarn.scheduler.maximum-allocation-vcores:单个任务可申请的最多虚拟CPU个数,默认是32。

对于一个CPU核数较多的集群来说,上面的默认配置显然是不合适的,在我的测试集群中,4个节点每个机器CPU核数为31,留一个给操作系统,可以配置为:

  <property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>31</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>124</value>
</property>

参考文章

转载自http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu-configuration.html?utm_source=tuicool&utm_medium=referral

转载-YARN的内存和CPU配置的更多相关文章

  1. YARN的内存和CPU配置

    时间 2015-06-05 00:00:00  JavaChen's Blog 原文  http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu- ...

  2. aix 查看内存,CPU 配置信息

    内存lsattr -El mem0cpu lsdev -C |grep procCPU的信息lsattr -El proc0   #bootinfo -r查看物理内存     使用命令#  lsdev ...

  3. 【原创】大叔经验分享(21)yarn中查看每个应用实时占用的内存和cpu资源

    在yarn中的application详情页面 http://resourcemanager/cluster/app/$applicationId 或者通过application命令 yarn appl ...

  4. 网络互联技术(2)——前篇—【转载】电脑结构和CPU、内存、硬盘三者之间的关系

    原文链接:传送门 详细内容: 电脑结构和CPU.内存.硬盘三者之间的关系 前面提到了,电脑之父——冯·诺伊曼提出了计算机的五大部件:输入设备.输出设备.存储器.运算器和控制器. 我们看一下现在我们电脑 ...

  5. 【转载】Linux下查看CPU、内存占用率

    不错的文章(linux系统性能监控--CPU利用率):https://blog.csdn.net/ctthuangcheng/article/details/52795477 在linux的系统维护中 ...

  6. Hadoop、Yarn和vcpu资源的配置

    转载自:https://www.cnblogs.com/S-tec-songjian/p/5740691.html Hadoop  YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进 ...

  7. [Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情

    本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...

  8. spark性能调优(四) spark shuffle中JVM内存使用及配置内幕详情

    转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1. ...

  9. Spark Shuffle 中 JVM 内存使用及配置内幕详情

      本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified M ...

随机推荐

  1. python之tkinter使用-Grid(网格)布局管理器

    # 使用tkinter编写登录窗口 # Grid(网格)布局管理器会将控件放置到一个二维的表格里,主控件被分割为一系列的行和列 # stricky设置对齐方式,参数N/S/W/E分别表示上.下.左.右 ...

  2. selenium之批量执行测试用例

    把写好的测试用例放在指定目录下,使用discover函数扫描该目录,并根据关键字自动筛选需要执行的用例.本例使用Python3.6版本. # 遍历指定目录,批量执行测试用例 import unitte ...

  3. Lodop打印设计(PRINT_DESIGN)里的快捷键

    Lodop打印控件,给开发人员提供了可视化编辑工具,编辑后可生成代码,然后复制到自己程序代码中,让开发更简单,打印设计中有一些快捷键也能让开发更便捷. 打印设计快捷键:ctrl 多个选中Shift 左 ...

  4. NVIDIA面目生成器再做突破

    导读 NVIDIA创建的AI系统“GAN”可以通过对图像数据库的学习,来随机生成超逼真人脸照片而一炮走红,经过长时间的研发与晚上目前这套系统已经有了极大的进步.除了可以自主学习之外,生成的内容逼真,让 ...

  5. BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)

    原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了.做法与可行流类似. 因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的. #in ...

  6. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  7. 自学Linux Shell13.2-选项处理(主要getopt、getopts命令)

    点击返回 自学Linux命令行与Shell脚本之路 Bash shell提供了一些不同的方法来从用户处获得数据,包括以下3中方法: 命令行参数(添加在名利后面的数据) 命令行选项(可修改命令行为的单个 ...

  8. 神奇的操作——线段树合并(例题: BZOJ2212)

    什么是线段树合并? 首先你需要动态开点的线段树.(对每个节点维护左儿子.右儿子.存储的数据,然后要修改某儿子所在的区间中的数据的时候再创建该节点.) 考虑这样一个问题: 你现在有两棵权值线段树(大概是 ...

  9. qrcode模块简单使用

    函数式自动生成二维码 import qrcode img = qrcode.make("hello world!") img.get_image().show() img.save ...

  10. VLC1.2 播放视频迟滞卡

    用libvlc 提供的示例,用1080p播放本事是720p的视频,会有卡住的现象. 后改用32位播放后正常.(R,G,B的掩码需要适当调换.我在ubuntu上编译两个项目,掩码值都需要调换,不知道为什 ...