BZOJ.4241.历史研究(回滚莫队 分块)
\(Description\)
长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数)
\(Solution\)
好像可以用莫队做,但是取max的操作普通莫队是不好撤销的(Subd部分)
于是可以用不带删除的莫队: 回滚莫队
询问依旧是按(左端点所在块,右端点)排序
1.对于同在一块的询问,暴力查询,最差O(sqrt(n))
2.对于不在同一块的询问(左端点ql在左边,右端点qr在右边的某块)
我们对左端点相同的询问一起考虑,这时r一定是单调递增的
令l为下一块的开头,r为当前块的最右端点
先将r移动到当前询问qr处(只需要加入元素),记录当前答案bef=Now;
然后将l向左移动到ql处,统计答案,得到ans[i];
然后将l重新从ql移动到之前的l处,消除刚才询问的影响,然后Now=bef。
这样对于每次块的询问,r最多每次移动O(n),总O(nsqrt(n));对于每次询问,l最多移动O(sqrt(n)),总O(msqrt(n))
对于每一块别忘清空tm与Now,回滚只是消除的l的影响
tm[],ref[]开longlong后真的相当慢
//6696kb 10744ms
#include <cmath>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5,MAXIN=2e6;
int n,m,size,A[N],ref[N],tm[N],bel[N],B_tm[N];
LL Ans[N],Now;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Ask
{
int l,r,id;
bool operator <(const Ask &a)const{
return bel[l]==bel[a.l]?r<a.r:bel[l]<bel[a.l];
}
}q[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int Find(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]>=x) r=mid;
else l=mid+1;
return l;
}
void Discrete()
{
for(int i=1; i<=n; ++i) ref[i]=A[i]=read();
std::sort(ref+1,ref+1+n);
int cnt=1;
for(int i=2; i<=n; ++i)
if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1; i<=n; ++i) A[i]=Find(A[i],cnt);
}
inline void Add(int p){
Now=std::max(Now,1ll*++tm[p]*ref[p]);
}
inline void Subd(int p){
--tm[p];
}
LL Query_Bits(int l,int r)
{
LL mx=0;
for(int i=l; i<=r; ++i)
mx=std::max(mx,1ll*++B_tm[A[i]]*ref[A[i]]);
for(int i=l; i<=r; ++i) --B_tm[A[i]];
// while(sk[0]) B_tm[sk[sk[0]--]]=0;//快不了多少
return mx;
}
int Update(int i,int blo)
{
int r=std::min(blo*size,n),l=r+1,L=l;
memset(tm,0,sizeof tm);
Now=0;//置0!
for(; bel[q[i].l]==blo; ++i)
{
if(bel[q[i].l]==bel[q[i].r]) Ans[q[i].id]=Query_Bits(q[i].l,q[i].r);
else
{
while(r<q[i].r) Add(A[++r]);
LL bef=Now;
while(l>q[i].l) Add(A[--l]);
Ans[q[i].id]=Now;
while(l<L) Subd(A[l++]);
Now=bef;
}
}
return i;
}
int main()
{
n=read(),m=read(),size=sqrt(n);
for(int i=1; i<=n; ++i) bel[i]=(i-1)/size+1;
Discrete();
for(int i=1; i<=m; ++i) q[i].l=read(),q[i].r=read(),q[i].id=i;
std::sort(q+1,q+1+m);
for(int now=1,i=1; i<=bel[n]; ++i) now=Update(now,i);
for(int i=1; i<=m; ++i) printf("%lld\n",Ans[i]);
return 0;
}
BZOJ.4241.历史研究(回滚莫队 分块)的更多相关文章
- bzoj4241/AT1219 历史研究(回滚莫队)
bzoj4241/AT1219 历史研究(回滚莫队) bzoj它爆炸了. luogu 题解时间 我怎么又在做水题. 就是区间带乘数权众数. 经典回滚莫队,一般对于延长区间简单而缩短区间难的莫队题可以考 ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- BZOJ 4241: 历史研究 ( 回 滚 )
题目: 链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:给你一个长度为n序列,m次查询,每次询问 一段区间 最大的 a[ i ...
- 「JOISC 2014 Day1」历史研究 --- 回滚莫队
题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...
- BZOJ4241历史研究——回滚莫队
题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...
- AT1219 歴史の研究 回滚莫队
可在vj上提交:https://vjudge.net/problem/AtCoder-joisc2014_c 题意: IOI 国历史研究的第一人--JOI 教授,最近获得了一份被认为是古代 IOI 国 ...
- AT1219 歴史の研究[回滚莫队学习笔记]
回滚莫队例题. 这题的意思大概是 设 \(cnt_i\) 为 l ~ r 这个区间 \(i\) 出现的次数 求\(m\) 次询问 求 l~r 的 max {\(a_i\) * \(cnt_i\)} \ ...
- BZOJ4241历史研究题解--回滚莫队
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4241 分析 这题就是求区间权值乘以权值出现次数的最大值,一看莫队法块可搞,但仔细想想,莫 ...
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
随机推荐
- Linux input子系统简介
1.前言 本文主要对Linux下的input子系统进行介绍 2. 软件架构 图 input子系统结构图 input子系统主要包括三个部分:设备驱动层.核心层和事件层.我们可以分别理解为:具体的输入设备 ...
- Linux inotify功能及实现原理【转】
转自:http://blog.csdn.net/myarrow/article/details/7096460 1. inotify主要功能 它是一个内核用于通知用户空间程序文件系统变化的机制. 众所 ...
- mybatis异常分析jdbcType
Exception in thread "main" org.springframework.jdbc.UncategorizedSQLException: Error setti ...
- Expm 8_1 区间划分问题
[问题描述] 给定一组报告,其中的每个报告设置了一个开始时间si和结束时间fi.设计与实现一个算法,对这组报告分配最少数量的教室,使得这些报告能无冲突的举行. package org.xiu68. ...
- Uiautomator之入门
优点:1.可以对所有操作进行自动化,操作简单: 2.不需要对被测程序进行重签名,且,可以测试所有设备上的程序,比如~某APP,比如~拨号,比如~发信息等等 3.对于控件定位,要比robotium ...
- 解决Linux安装 VMware tools 工具的方法
一:启动linux服务器,并用远程登录工具访问linux服务器 1:启动系统 2:用服务器控制台 :查看点ip地址 3:用客户端 连接服务器 二:挂起 vm虚拟机的 tools 安装光盘 三:开始 ...
- LeetCode(56):合并区间
Medium! 题目描述: 给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18] ...
- Codeforces 519D A and B and Interesting Substrings(二维map+前缀和)
题目链接:http://codeforces.com/problemset/problem/519/D 题目大意:给你一串字符串s仅由小写字母组成,并且对于'a'~'z'都给了一个值.求子串t满足t的 ...
- 带信号灯的最短路dijkstra问题(阿里巴巴2018校园招聘算法题)
题目描述 现在城市有N个路口,每个路口有自己的编号,从0到N-1,每个路口还有自己的交通控制信号,例如0,3表示0号路口的交通信号每3个时刻变化一次,即0到3时刻0号路口允许通过,3到6时刻不允许通过 ...
- Codeforces 1000F One Occurrence 主席树|| 离线+线段树
One Occurrence 为什么我半年前这么菜呀, 这种场只A三题... 我们在主席树 || 线段树上维护每个数的右边和它一样的数在哪里, 然后就变成了区间求最大值. 注意加进去的时候要把它右边一 ...