Bellman-Ford算法——为什么要循环n-1次?图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了!
单源最短路径
给定一个图,和一个源顶点src,找到从src到其它所有所有顶点的最短路径,图中可能含有负权值的边。
Dijksra的算法是一个贪婪算法,时间复杂度是O(VLogV)(使用最小堆)。但是迪杰斯特拉算法在有负权值边的图中不适用,Bellman-Ford适合这样的图。在网络路由中,该算法会被用作距离向量路由算法。Bellman-Ford也比迪杰斯特拉算法更简单。但Bellman-Ford的时间复杂度是O(VE),这要比迪杰斯特拉算法慢。(V为顶点的个数,E为边的个数)
算法描述
输入:图 和 源顶点
输出:从src到所有顶点的最短距离。如果有负权回路(不是负权值的边),则不计算该最短距离,没有意义,因为可以穿越负权回路任意次,则最终为负无穷。
算法步骤
1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。
关于该算法的证明也比较简单,采用反证法,具体参考:http://courses.csail.mit.edu/6.006/spring11/lectures/lec15.pdf
该算法是利用动态规划的思想。该算法以自底向上的方式计算最短路径。
它首先计算最多一条边时的最短路径(对于所有顶点)。然后,计算最多两条边时的最短路径。外层循环需要执行|V|-1次。
例子
一下面的有向图为例:给定源顶点是0,初始化源顶点距离所有的顶点都是是无穷大的,除了源顶点本身。因为有5个顶点,因此所有的边需要处理4次。
按照以下的顺序处理所有的边:(B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D).
第一次迭代得到如下的结果(第一行为初始化情况,最后一行为最终结果):
当 (B,E), (D,B), (B,D) 和 (A,B) 处理完后,得到的是第二行的结果。
当 (A,C) 处理完后,得到的是第三行的结果。
当 (D,C), (B,C) 和 (E,D) 处理完后,得到第四行的结果。
第一次迭代保证给所有最短路径最多只有1条边。当所有的边被第二次处理后,得到如下的结果(最后一行为最终结果):
第二次迭代保证给所有最短路径最多只有2条边。我们还需要2次迭代(即所谓的松弛操作),就可以得到最终结果。
算法描述
为什么要循环V-1次?
答:因为最短路径肯定是个简单路径,不可能包含回路的,如果包含回路,且回路的权值和为正的,那么去掉这个回路,可以得到更短的路径如果回路的权值是负的,那么肯定没有解了.图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了。
算法导论上的伪代码:
BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i ← 1 to |V[G]| - 1
3 do for each edge (u, v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE
Bellman-Ford算法——为什么要循环n-1次?图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了!的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- 34、在排序数组中查找元素的第一个和最后一个位置 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(34)在排序数组中查找元素的第一个和最后一个位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: / ...
- 36、有效的数独 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(36)有效的数独 前言 1)码农三少 ,一个致力于 编写极简.但齐全题解(算法) 的博主. 2)文末附赠 价值上百美刀 资料. 一 ...
- js中,for循环里面放ajax,ajax访问不到变量以及每次循环获取不到数据问题总结
想在点击"终端控制"的时候能够开启多个窗口对多个终端进行管理: /**提交事件**/ $("#terminalControl").bind("clic ...
随机推荐
- unity3d 加载优化建议 总结 from 侑虎科技
第一部分 我们对于纹理资源的加载建议如下: 1.严格控制RGBA32和ARGB32纹理的使用,在保证视觉效果的前提下,尽可能采用“够用就好”的原则,降低纹理资源的分辨率,以及使用硬件支持的纹理格式. ...
- Xshell5中常用linux服务器命令集合
简易版:http://www.zhimengzhe.com/linux/84546.html 详细版:http://www.cnblogs.com/peida/tag/%E6%AF%8F%E6%97% ...
- 排序——选择排序(java描述)
百度百科的描述如下:选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元 ...
- python3.5学习第一章
在python中,变量赋值或者其他语句后不需要加”:“ python中,缩进特别重要! 条件语句和循环语句,要加”:“ 一.变量赋值 name = "cecelia"name2 = ...
- ubuntu vscode chrome 显示color emoji
win10 下vscode默认就可以显示color emoji, 真是亲儿子啊. 但linux下默认是显示黑白的. 绕了一些弯路之后,发现最简单的办法是: 1 下载google noto字体全集 ...
- java调用dll/so文件
大家都知道用C++编写的程序如果用于windows使用则编译为xxx.dll文件,如果是Linux使用则编译为libxxx.so文件.下面将java调用dll/so文件的方法粘出来方便下次使用.此处使 ...
- top 内存mem的used很高,或者100%
top 内存mem的used很高,或者100% Linux服务器运行一段时间后,由于其内存管理机制,会将暂时不用的内存转为buff/cache,这样在程序使用到这一部分数据时,能够很快的取出,从而提高 ...
- 雷林鹏分享:jQuery EasyUI 扩展
jQuery EasyUI 扩展 Portal(制作图表.列表.球形图等) 数据网格视图(DataGrid View) 可编辑的数据网格(Editable DataGrid) 可编辑的树(Editab ...
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- Nr,GenBank, RefSeq, UniProt 数据库的异同
Nr,GenBank, RefSeq, UniProt 数据库的异同 有的文章在做DEG分析时,会把reads比对到RefSeq的转录组上.我也没搞清楚这和直接比对到常规转录组上有什么区别. 文章:S ...