单源最短路径

给定一个图,和一个源顶点src,找到从src到其它所有所有顶点的最短路径,图中可能含有负权值的边。

Dijksra的算法是一个贪婪算法,时间复杂度是O(VLogV)(使用最小堆)。但是迪杰斯特拉算法在有负权值边的图中不适用,Bellman-Ford适合这样的图。在网络路由中,该算法会被用作距离向量路由算法。Bellman-Ford也比迪杰斯特拉算法更简单。但Bellman-Ford的时间复杂度是O(VE),这要比迪杰斯特拉算法慢。(V为顶点的个数,E为边的个数)

算法描述

输入:图 和 源顶点
输出:从src到所有顶点的最短距离。如果有负权回路(不是负权值的边),则不计算该最短距离,没有意义,因为可以穿越负权回路任意次,则最终为负无穷。

算法步骤

1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。

关于该算法的证明也比较简单,采用反证法,具体参考:http://courses.csail.mit.edu/6.006/spring11/lectures/lec15.pdf
该算法是利用动态规划的思想。该算法以自底向上的方式计算最短路径。
它首先计算最多一条边时的最短路径(对于所有顶点)。然后,计算最多两条边时的最短路径。外层循环需要执行|V|-1次。

例子

一下面的有向图为例:给定源顶点是0,初始化源顶点距离所有的顶点都是是无穷大的,除了源顶点本身。因为有5个顶点,因此所有的边需要处理4次。

按照以下的顺序处理所有的边:(B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D).
第一次迭代得到如下的结果(第一行为初始化情况,最后一行为最终结果):

当 (B,E), (D,B), (B,D) 和 (A,B) 处理完后,得到的是第二行的结果。
当 (A,C) 处理完后,得到的是第三行的结果。
当 (D,C), (B,C) 和 (E,D) 处理完后,得到第四行的结果。

第一次迭代保证给所有最短路径最多只有1条边。当所有的边被第二次处理后,得到如下的结果(最后一行为最终结果):

第二次迭代保证给所有最短路径最多只有2条边。我们还需要2次迭代(即所谓的松弛操作),就可以得到最终结果。

算法描述

1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ——>+∞, d[s]——>0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

为什么要循环V-1次?
答:因为最短路径肯定是个简单路径,不可能包含回路的,如果包含回路,且回路的权值和为正的,那么去掉这个回路,可以得到更短的路径如果回路的权值是负的,那么肯定没有解了.图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了。

算法导论上的伪代码:

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i ← 1 to |V[G]| - 1
3 do for each edge (u, v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

Bellman-Ford算法——为什么要循环n-1次?图有n个点,又不能有回路,所以最短路径最多n-1边。又因为每次循环,至少relax一边所以最多n-1次就行了!的更多相关文章

  1. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  2. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  3. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  4. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  5. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. 34、在排序数组中查找元素的第一个和最后一个位置 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(34)在排序数组中查找元素的第一个和最后一个位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: / ...

  8. 36、有效的数独 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(36)有效的数独 前言 1)码农三少 ,一个致力于 编写极简.但齐全题解(算法) 的博主. 2)文末附赠 价值上百美刀 资料. 一 ...

  9. js中,for循环里面放ajax,ajax访问不到变量以及每次循环获取不到数据问题总结

    想在点击"终端控制"的时候能够开启多个窗口对多个终端进行管理: /**提交事件**/ $("#terminalControl").bind("clic ...

随机推荐

  1. QT移植无法启动 This application failed to start because it could not find or load the QT platform

    QT配置好在自己机器上可以运行,但在别人机器上一直弹出 "This application failed to start because it could not find or load ...

  2. 小程序之从后台取到数据后放入想要的标签list里

    问题:事情是这样的,我有一个标签的功能,but   我怎么吧后台取到的数据放到我想要的标签里呢,而且是那种多个数据自己会加一个标签的内种,效果如下 解决:我们需要用到wx:for   这个东西呢是需要 ...

  3. 【Python】yield

    彻底理解Python中的yield 2017年04月21日 17:49:57 阅读数:19733 阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结: 通常 ...

  4. python os.remove

    remove 只能删除文件,删除目录会报错 >>> import os >>> os.remove("/opt/xxx/server_log/test&q ...

  5. np.split()和np.array_split()

    来自:爱抠脚的coder np.split(): 该函数的参数要么按照数字划分(int),要么是按列表list划分:如果仅是输入一个int类型的数字,你的数组必须是均等的分割,否则会报错. np.ar ...

  6. Windows下及Mac下的IntelliJ IDEA快捷键

    Mac 键盘符号说明 ⌘ == Command ⇧ == Shift ⇪ == Caps Lock ⌥ == Option ⌃ == Control ↩ == Return/Enter ⌫ == De ...

  7. Spark强大的函数扩展功能

    在数据分析领域中,没有人能预见所有的数据运算,以至于将它们都内置好,一切准备完好,用户只需要考虑用,万事大吉.扩展性是一个平台的生存之本,一个封闭的平台如何能够拥抱变化?在对数据进行分析时,无论是算法 ...

  8. POI 导入导出时异常[java.io.IOException: Broken pipe]

    使用用POI导出文件时抛出异常java.io.IOException: Broken pipe ERROR: 'java.io.IOException: Broken pipe' org.apache ...

  9. 第 3 章 镜像 - 017 - RUN vs CMD vs ENTRYPOINT

    RUN.CMD 和 ENTRYPOINT 这三个 Dockerfile 指令看上去很类似,很容易混淆. 简单的说: RUN 执行命令并创建新的镜像层,RUN 经常用于安装软件包. CMD 设置容器启动 ...

  10. 网格视图GridView的使用

    网格视图GridView的排列方式与矩阵类似,当屏幕上有很多元素(文字.图片或其他元素)需要按矩阵格式进行显示时,就可以使用GridView控件来实现. 本文将以一个具体的实例来说明如何使用GridV ...