[LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆
转载:https://leetcode.windliang.cc/leetCode-23-Merge-k-Sorted-Lists.html
描述
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example:
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6
k 个有序链表的合并。
我们用 N 表示链表的总长度,考虑最坏情况,k 个链表的长度相等,都为 n 。
解法一 暴力破解
简单粗暴,遍历所有的链表,将数字存到一个数组里,然后用快速排序,最后再将排序好的数组存到一个链表里。
public ListNode mergeKLists(ListNode[] lists) {
List<Integer> l = new ArrayList<Integer>();
//存到数组
for (ListNode ln : lists) {
while (ln != null) {
l.add(ln.val);
ln = ln.next;
}
}
//数组排序
Collections.sort(l);
//存到链表
ListNode head = new ListNode(0);
ListNode h = head;
for (int i : l) {
ListNode t = new ListNode(i);
h.next = t;
h = h.next;
}
h.next = null;
return head.next;
}
时间复杂度:假设 N 是所有的数字个数,存到数组是 O(N),排序如果是用快速排序就是 O(Nlog_N),存到链表是 O(N),所以取个最大的,就是 O(Nlog_N)。
空间复杂度:新建了一个链表,O(N)。
解法二 一列一列比较

我们可以一列一列的比较,将最小的一个存到一个新的链表里。
public ListNode mergeKLists(ListNode[] lists) {
int min_index = 0;
ListNode head = new ListNode(0);
ListNode h = head;
while (true) {
boolean isBreak = true;//标记是否遍历完所有链表
int min = Integer.MAX_VALUE;
for (int i = 0; i < lists.length; i++) {
if (lists[i] != null) {
//找出最小下标
if (lists[i].val < min) {
min_index = i;
min = lists[i].val;
}
//存在一个链表不为空,标记改完 false
isBreak = false;
}
}
if (isBreak) {
break;
}
//加到新链表中
ListNode a = new ListNode(lists[min_index].val);
h.next = a;
h = h.next;
//链表后移一个元素
lists[min_index] = lists[min_index].next;
}
h.next = null;
return head.next;
}
时间复杂度:假设最长的链表长度是 n ,那么 while 循环将循环 n 次。假设链表列表里有 k 个链表,for 循环执行 k 次,所以时间复杂度是 O(kn)。
空间复杂度:N 表示最终链表的长度,则为 O(N)。
其实我们不需要创建一个新链表保存,我们只需要改变得到的最小结点的指向就可以了。
public ListNode mergeKLists(ListNode[] lists) {
int min_index = 0;
ListNode head = new ListNode(0);
ListNode h = head;
while (true) {
boolean isBreak = true;
int min = Integer.MAX_VALUE;
for (int i = 0; i < lists.length; i++) {
if (lists[i] != null) {
if (lists[i].val < min) {
min_index = i;
min = lists[i].val;
}
isBreak = false;
}
}
if (isBreak) {
break;
}
//最小的节点接过来
h.next = lists[min_index];
h = h.next;
lists[min_index] = lists[min_index].next;
}
h.next = null;
return head.next;
}
时间复杂度:假设最长的链表长度是 n ,那么 while 循环将循环 n 次。假设链表列表里有 k 个链表,for 循环执行 k 次,所以时间复杂度是 O(kn)。
空间复杂度:O(1)。
解法三 优先队列
解法二中,我们每次都是取出一个最小的,然后加入一个新的, O(1)的复杂度,再找最小的,O(k) 的复杂度。我们完全可以用一个优先队列。

我们将优先级定义为数越小优先级越高,如果用堆实现优先队列,这样我们每次找最小不再需要 O(k),而是 O(log(k)),当然这样的话,我们加入新的话不再是 O(1),也需要 O(log(k))。可以看看这里和这里。
public ListNode mergeKLists(ListNode[] lists) {
//定义优先队列的比较器
Comparator<ListNode> cmp;
cmp = new Comparator<ListNode>() {
@Override
public int compare(ListNode o1, ListNode o2) {
// TODO Auto-generated method stub
return o1.val-o2.val;
}
};
//建立队列
Queue<ListNode> q = new PriorityQueue<ListNode>(cmp);
for(ListNode l : lists){
if(l!=null){
q.add(l);
}
}
ListNode head = new ListNode(0);
ListNode point = head;
while(!q.isEmpty()){
//出队列
point.next = q.poll();
point = point.next;
//判断当前链表是否为空,不为空就将新元素入队
ListNode next = point.next;
if(next!=null){
q.add(next);
}
}
return head.next;
}
时间复杂度:while 循环依旧取决于最长的链表长度 n,while 循环里边,如果有 k 个链表,入队出队都需要 log(k),除此之外还有初始化队列的时间复杂度 O(k)。所以时间复杂度是 O(min(k,nlog(k)))。
空间复杂度:优先队列需要 O(k)的复杂度。
解法四 两两合并
利用之前合并两个链表的算法,我们直接两两合并,第 0 个和第 1 个链表合并,新生成的再和第 2 个链表合并,新生成的再和第 3 个链表合并...直到全部合并完。
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode h = new ListNode(0);
ListNode ans=h;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
h.next = l1;
h = h.next;
l1 = l1.next;
} else {
h.next = l2;
h = h.next;
l2 = l2.next;
}
}
if(l1==null){
h.next=l2;
}
if(l2==null){
h.next=l1;
}
return ans.next;
}
public ListNode mergeKLists(ListNode[] lists) {
if(lists.length==1){
return lists[0];
}
if(lists.length==0){
return null;
}
ListNode head = mergeTwoLists(lists[0],lists[1]);
for (int i = 2; i < lists.length; i++) {
head = mergeTwoLists(head,lists[i]);
}
return head;
}
时间复杂度:不妨假设是 k 个链表并且长度相同,链表总长度为 N,那么第一次合并就是 N/k 和 N/k ,第二次合并就是 2 * N/k 和 N/k,第三次合并就是 3 * N/k 和 N / k,总共进行 n - 1 次合并,每次合并的时间复杂度是 O(n),所以总时间复杂度就是O(\sum_{i=1}^{k-1}(i*\frac{N}{k}+\frac{N}{k}))=O(kN)O(∑i=1k−1(i∗kN+kN))=O(kN),可以将两项分开,N/k 其实是常数,分开的第一项是等差数列。
空间复杂度:O(1)。
解法五 两两合并优化
依旧假设是 k 个链表,合并的过程优化下,使得只需要合并 log(k)次。

public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode h = new ListNode(0);
ListNode ans=h;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
h.next = l1;
h = h.next;
l1 = l1.next;
} else {
h.next = l2;
h = h.next;
l2 = l2.next;
}
}
if(l1==null){
h.next=l2;
}
if(l2==null){
h.next=l1;
}
return ans.next;
}
public ListNode mergeKLists(ListNode[] lists) {
if(lists.length==0){
return null;
}
int interval = 1;
while(interval<lists.length){
System.out.println(lists.length);
for (int i = 0; i + interval< lists.length; i=i+interval*2) {
lists[i]=mergeTwoLists(lists[i],lists[i+interval]);
}
interval*=2;
}
return lists[0];
}
时间复杂度:假设每个链表的长度都是 n ,那么时间复杂度就是O(\sum_{i=1}^{log_2k}n)=O(nlogk)O(∑i=1log2kn)=O(nlogk)。
空间复杂度:O(1)。
总结
优先队列的运用印象深刻,此外对两两链表的合并,我们仅仅改变了合并的方式就将时间复杂度降低了很多,美妙!
[LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆的更多相关文章
- 蜗牛慢慢爬 LeetCode 23. Merge k Sorted Lists [Difficulty: Hard]
题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...
- [LeetCode] 23. Merge k Sorted Lists 合并k个有序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
- [leetcode 23]Merge k Sorted Lists
1 题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexi ...
- LeetCode 23 Merge k Sorted Lists(合并k个有序链表)
题目链接: https://leetcode.com/problems/merge-k-sorted-lists/?tab=Description Problem: 给出k个有序的list, 将其进行 ...
- Java [leetcode 23]Merge k Sorted Lists
题目描述: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complex ...
- [leetcode]23. Merge k Sorted Lists归并k个有序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. I ...
- [LeetCode] 23. Merge k Sorted Lists ☆☆
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...
- [LeetCode]23. Merge k Sorted Lists合并K个排序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
- leetcode 23. Merge k Sorted Lists(堆||分治法)
Merge k sorted linked lists and return it as one sorted list. 题意:把k个已经排好序的链表整合到一个链表中,并且这个链表是排了序的. 题解 ...
随机推荐
- Java基础 --Unix与Mac系统 文件路径分隔符(一)
斜杠‘/’与反斜杠‘\’在不同系统的使用 1)Window平台使用反斜杠'\'作为文件层级分隔符:Windows使用反斜杠作为DOS命令提示符的参数标志,随着发展DOS命令符逐渐被淘汰,大部分情况下斜 ...
- Linux CentOS 7 安装mongoDB(4.0.6)
在官网下载安装包: https://www.mongodb.com/download-center/community 或者通过wget下载 wget https://fastdl.mongodb.o ...
- 幂率定律及绘制Power-law函数
来自:Eastmount 在我们日常生活中Power Law(幂次分布,Power-law Distributions)是常见的一个数学模型,如二八原则.这个世界上是20%的人掌握80%的人的金钱去经 ...
- [转]C和C++运行时库
转自csdn原文:https://blog.csdn.net/ithzhang/article/details/20160009 图片请去原文查看 在使用VC构建项目时,经常会遇到下面的链接错误: 初 ...
- Java中有多个异常, 如何确定捕获顺序(多个catch),先从上到下执行,判断异常的大小,如果包含捕到异常,就进入这个catch,后面的就不再执行
Java中异常的捕获顺序(多个catch)( Java代码 import java.io.IOException; public class ExceptionTryCatchTest { publi ...
- 排序——冒泡排序(java描述)
百度百科:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法. 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果他们的顺序(如从大到小.首字母从A到Z)错误就把他们交 ...
- node+ts的心得与坑
首先先明确,用node+ts的目的,为什么不ng+ts.这一点后面还会反复提醒自己 node毕竟不是ng. 用node的理由: 处理js,在后端操纵dom,读写类html格式的东西,比直接用py的后端 ...
- P499 usebrass2
有两种方式可以实现多态公有继承 1) 在派生类中重新定义基类的方法 2) 使用虚方法 如下是使用虚方法 brass.h #ifndef BRASS_H #define BRASS_H #include ...
- P678-vect2.cpp
// CH1608.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <string> #include < ...
- winfrom datagridview ,picturebox,显示图片,以及删除问题
private void write_listview(DataSet ds) { DataTable dt = ds.Tables[0]; ...