KKT条件原理
问题引入
max f(x, y)
s.t.
g(x,y) <= 0
几何解释

a. g(x ,y) <= 0为上图中z = 0平面中的圆,圆的边表示g(x, y) = 0,圆的内部表示g(x, y) < 0。
b. z = f(x, y)为上图中的曲面。
上述极值问题就是要求当点(x, y)落在圆内时(包括圆的边),f(x, y)的最大值。
1、 如果极值点在圆内,则显然有
f'(x, y) = 0
g(x, y) < 0
2、 如果极值点在圆边上,有拉格朗日乘子法我们知道
f’(x, y) + λg’(x ,y) = 0
g(x, y) = 0
如果是数学考试,我们直接求出上面两种情况的所有解(x, y),再带入f(x, y)计算,选取最大值即可。
对偶问题
稍微修改一下文章开头的极值问题,得到新的极值问题1
min f(x, y)
s.t.
g(x,y) <= 0
拉格朗日函数如下
F(x, y, λ) = f(x, y) + λg(x, y)
我们对x, y求导数并令其为0,即
F’(x, y, λ) = f’(x, y) + λg’(x, y) = 0
场景1等价于
F’(x, y, λ) = 0
g(x, y) < 0
λ = 0
场景2等价于
F’(x, y, λ) = 0
g(x, y) = 0
λ > 0
场景二极小值点在圆边上,如果此时f(x, y)与g(x, y)梯度方向相同,说明点(x ,y)往圆内移动,f(x, y)的值会和g(x, y)的值一样减小,显然此时圆边上的点(x, y)不是极小值点。所以如果f(x, y)的极小值点在圆边上,必然f(x, y)与g(x, y)梯度方向相反,即λ > 0。
综合上述两种情况,极值问题1的对偶问题2如下(对偶问题解决了,原问题也就解决了)
max F(x, y, λ) = f(x, y) + λg(x, y)
s.t.
g(x, y) <= 0
λ >= 0
λg(x, y) = 0
点(x, y)在圆圈g(x, y) <= 0内,对于λ >= 0,我们有F(x, y, λ) <= f(x, y),于是F(x, y, λ)的上界就是f(x, y)的下界。
我们把
g(X) <= 0
λ >= 0
λg(X) = 0
称作KKT条件。X表示向量(x1; x2; …; xn)。
KKT条件原理的更多相关文章
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22 大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...
- 关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
- 带约束优化问题 拉格朗日 对偶问题 KKT条件
转自:七月算法社区http://ask.julyedu.com/question/276 咨询:带约束优化问题 拉格朗日 对偶问题 KKT条件 关注 | 22 ... 咨询下各位,在机器学习相关内容中 ...
- 机器学习之支持向量机(三):核函数和KKT条件的理解
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...
- 04-拉格朗日对偶问题和KKT条件
04-拉格朗日对偶问题和KKT条件 目录 一.拉格朗日对偶函数 二.拉格朗日对偶问题 三.强弱对偶的几何解释 四.鞍点解释 4.1 鞍点的基础定义 4.2 极大极小不等式和鞍点性质 五.最优性条件与 ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
随机推荐
- MySQL crash-safe replication【转载】
本文来自david大神的博客,innodb技术内幕的作者. http://insidemysql.blog.163.com/blog/static/202834042201385190333/ MyS ...
- 前端 html button标签
就是一个按钮标签 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...
- elemet-paging
<template> <card-layout :title="L('Prosuct')" :actions="actions" @click ...
- springmvc aop 事务配置
对应的中文: 任意公共方法的执行: execution(public * *(..)) 任何一个以“set”开始的方法的执行: execution(* set*(..)) AccountService ...
- pycharm的安装和使用
python开发IDE: pycharm.eclipse 1.要专业版 2.不要汉化版 一.运算符 + - * ./ ** % // 判断某个东西是否在东西里面包含 in not ...
- Python pickle 模块
转自:https://www.cnblogs.com/lincappu/p/8296078.html pickle可以存储的数据类型 所有python支持的原生类型:布尔值,整数,浮点数,复数,字符串 ...
- 解决异地服务器接口访问跨域,node构建反向代理
跨域对于前端来说是一个老大难的问题,许多方法如jsonp.document.domain + iframe...都有或多或少的问题,一个最佳实践就是通过服务器nginx做反向代理,但奈何不懂相关知识, ...
- 日期格式化(类似QQ邮箱中的邮件列表显示日期)
日期格式化(类似QQ邮箱中的邮件列表显示日期) public static string FormatDateDisplay(DateTime _datetime) { var ts = DateTi ...
- 一个简单的MapReduce示例(多个MapReduce任务处理)
一.需求 有一个列表,只有两列:id.pro,记录了id与pro的对应关系,但是在同一个id下,pro有可能是重复的. 现在需要写一个程序,统计一下每个id下有多少个不重复的pro. 为了写一个完整的 ...
- cocos2d-x JS 复选按钮checkBox的单选与多选
var HZ_createRoom = jx.BaseView.extend({//红中麻将 ctor : function() { this._super(); this.addLayout(res ...