题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2077

还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到小盘的上面。xhd在想如果我们允许最大的盘子放到最上面会怎么样呢?(只允许最大的放在最上面)当然最后需要的结果是盘子从小到大排在最右边。 

Input输入数据的第一行是一个数据T,表示有T组数据。 
每组数据有一个正整数n(1 <= n <= 20),表示有n个盘子。 
Output对于每组输入数据,最少需要的摆放次数。 
Sample Input

2
1
10

Sample Output

2
19684

题解:由汉诺塔3知从左往右的递推关系式为F[n]=F[n-1]*3+2,而此题允许最大盘在上记其步骤数为f[n],

则f[n]=F[n-1]+2。原理很简单,将上面n-1个盘看为整体先将其移到B上再将 第n个盘移到B上再将其移到C上,最后再将n-1个移到C上

 #include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
#include <queue>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define INF 0x3f3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
bool cmp(int x,int y)
{
return x>y;
}
const int N=;
const int mod=1e9+;
int main()
{
std::ios::sync_with_stdio(false);
ll F[],f[],t,n;
F[]=,f[]=;
for(int i=;i<=;i++)
F[i]=*F[i-]+;
for(int i=;i<=;i++)
f[i]=F[i-]+;
cin>>t;
while(t--){
cin>>n;
cout <<f[n]<< endl;
}
return ;
}

HDU 2077 汉诺塔IV (递推)的更多相关文章

  1. HDU 2077 汉诺塔IV (递推)

    题意:... 析:由于能最后一个是特殊的,所以前n-1个都是不变的,只是减少了最后一个盘子的次数,所以根据上一个题的结论 答案就是dp[n-1] + 2. 上一题链接:http://www.cnblo ...

  2. HDU 2077 汉诺塔IV 递归 通项公式

    刚刚做的HDU 2064很好找规律, 回忆一下: b[1] = 2; b[n] = b[n-1] *3 + 2; 可得b[n]= 3^n-1 不懂的传送门http://blog.csdn.net/mu ...

  3. HDU 2064 汉诺塔III (递推)

    题意:.. 析:dp[i] 表示把 i 个盘子搬到第 3 个柱子上最少步数,那么产生先把 i-1 个盘子搬到 第3个上,再把第 i 个搬到 第 2 个上,然后再把 i-1 个盘子, 从第3个柱子搬到第 ...

  4. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  5. 2077 汉诺塔IV

    Problem Description 还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到小盘的上面.xhd在想 ...

  6. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  7. 汉诺塔III 汉诺塔IV 汉诺塔V (规律)

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  8. hdu 1207 汉诺塔II (DP+递推)

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  9. HDU 2064 汉诺塔III (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...

随机推荐

  1. Sql批量修改帝国cms文章发布时间(需unix时间,否则会变为1970-01-01)

    在迁移网站时,有时我们需要将帝国cms文章发表时间批量修改为当前时间,在帝国cms后台→系统设置→备份与恢复数据→执行sql语句: update phome_ecms_news set newstim ...

  2. 用PE系统安装原版XP

    方法:直接运行Winnt32程序进行XP原版系统安装.    [1].在PE系统中将XP SP3系统镜像ISO文件从U盘上复制到硬盘的非系统分区后,用PE所带WinRAR程序将该ISO镜像中的I386 ...

  3. [ROS]一些传感器数据读取融合问题的思考

    思考问题: 1. 如何实现传感器数据的融合,或者说时间同步? 比如里程计读数和雷达数据融合? void SlamGMapping::startLiveSlam() { entropy_publishe ...

  4. nodejs, vue, webpack 项目实践

    vue 及 webpack,均不需要与nodejs一期使用,他们都可以单独使用到任何语言的框架中. http://jiongks.name/blog/just-vue/ https://cn.vuej ...

  5. emq数据库插件

  6. (转)EOSIO开发(四)- nodeos、keosd与cleos

    前一篇文章介绍了EOSIO中钱包.账户与账户权限的概念,这一篇文章继续学习EOSIO系统的主要组件,包括nodeos.keosd以及cleos. 本文执行的命令都是基于Docker环境,请先下载Doc ...

  7. 20165321 2017-2018-2《Java程序设计》课程总结

    每周作业链接汇总 预备作业1:20165321 我期望的师生关系 预备作业2:20165321 学习基础与C语言学习心得 预备作业3:20165321预备作业3:Linux安装及命令入门 第一周作业: ...

  8. vim自动格式化

    ,gg 跳转到第一行 ,shift+v 转到可视模式 ,shift+g 全选 ,按下神奇的 = 你会惊奇的发现代码自动缩进了,呵呵,当然也可能是悲剧了.

  9. cocos游戏开发小白教程网站

    <Quick-Cocos2d-x v3.3小白书系列教程> <Quick-Cocos2d-x初学者游戏教程>

  10. Navicat Premium 安装与激活破解版简单操作 (原)

    首先下载navicate程序以及破解文件,这里一并存到了百度网盘直接下载即可 链接:https://pan.baidu.com/s/11ptFmsV1o3B5oB00zm2NdQ 密码:yw82 解压 ...