1、函数原型及参数说明

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)

参数说明:

n_components:  
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
          赋值为int,比如n_components=1,将把原始数据降到一个维度。
          赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。

copy:

类型:bool,True或者False,缺省时默认为True。

意义:表示是否在运行算法时,将原始训练数据复制一份。

若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;

若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。

whiten:

类型:bool,缺省时默认为False

意义:白化,使得每个特征具有相同的方差。关于“白化”,可参考:Ufldl教程

2、PCA的对象

components_ :返回具有最大方差的成分。
explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。
n_components_:返回所保留的成分个数n。
mean_:
noise_variance_:

3、PCA对象的方法

fit(X,y=None)

fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。
fit(X),表示用数据X来训练PCA模型。
函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。
fit_transform(X)
用X来训练PCA模型,同时返回降维后的数据。
newX=pca.fit_transform(X),newX就是降维后的数据。

inverse_transform()

将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)

transform(X)

将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。

此外,还有get_covariance()、get_precision()、get_params(deep=True)、score(X, y=None)等方法,以后用到再补充吧。

4、举例

以一组二维的数据data为例,data如下,一共12个样本(x,y),其实就是分布在直线y=x上的点,并且聚集在x=1、2、3、4上,各3个。

>>> data
array([[ 1. , 1. ],
[ 0.9 , 0.95],
[ 1.01, 1.03],
[ 2. , 2. ],
[ 2.03, 2.06],
[ 1.98, 1.89],
[ 3. , 3. ],
[ 3.03, 3.05],
[ 2.89, 3.1 ],
[ 4. , 4. ],
[ 4.06, 4.02],
[ 3.97, 4.01]])

data这组数据,有两个特征,因为两个特征是近似相等的,所以用一个特征就能表示了,即可以降到一维。下面就来看看怎么用sklearn中的PCA算法包。

(1)n_components设置为1,copy默认为True,可以看到原始数据data并未改变,newData是一维的。

>>> from sklearn.decomposition import PCA
>>> pca=PCA(n_components=1)
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
[-2.22617682],
[-2.09185561],
[-0.70594692],
[-0.64227841],
[-0.79795758],
[ 0.70826533],
[ 0.76485312],
[ 0.70139695],
[ 2.12247757],
[ 2.17900746],
[ 2.10837406]])
>>> data
array([[ 1. , 1. ],
[ 0.9 , 0.95],
[ 1.01, 1.03],
[ 2. , 2. ],
[ 2.03, 2.06],
[ 1.98, 1.89],
[ 3. , 3. ],
[ 3.03, 3.05],
[ 2.89, 3.1 ],
[ 4. , 4. ],
[ 4.06, 4.02],
[ 3.97, 4.01]])

(2)将copy设置为False,原始数据data将发生改变。

>>> pca=PCA(n_components=1,copy=False)
>>> newData=pca.fit_transform(data)
>>> data
array([[-1.48916667, -1.50916667],
[-1.58916667, -1.55916667],
[-1.47916667, -1.47916667],
[-0.48916667, -0.50916667],
[-0.45916667, -0.44916667],
[-0.50916667, -0.61916667],
[ 0.51083333, 0.49083333],
[ 0.54083333, 0.54083333],
[ 0.40083333, 0.59083333],
[ 1.51083333, 1.49083333],
[ 1.57083333, 1.51083333],
[ 1.48083333, 1.50083333]])

(3)n_components设置为'mle',看看效果,自动降到了1维。

>>> pca=PCA(n_components='mle')
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
[-2.22617682],
[-2.09185561],
[-0.70594692],
[-0.64227841],
[-0.79795758],
[ 0.70826533],
[ 0.76485312],
[ 0.70139695],
[ 2.12247757],
[ 2.17900746],
[ 2.10837406]])

(4)对象的属性值

>>> pca.n_components
1
>>> pca.explained_variance_ratio_
array([ 0.99910873])
>>> pca.explained_variance_
array([ 2.55427003])
>>> pca.get_params
<bound method PCA.get_params of PCA(copy=True, n_components=1, whiten=False)>

我们所训练的pca对象的n_components值为1,即保留1个特征,该特征的方差为2.55427003,占所有特征的方差百分比为0.99910873,意味着几乎保留了所有的信息。get_params返回各个参数的值。

(5)对象的方法

>>> newA=pca.transform(A)

对新的数据A,用已训练好的pca模型进行降维。

(6)设置参数

>>> pca.set_params(copy=False)
PCA(copy=False, n_components=1, whiten=False)

设置参数。

参考:

scikit-learn官网样例:http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA

博文:http://blog.csdn.net/u012162613/article/details/42192293http://www.ishowcode.com/ai/ml/scikit-learn-pca/

scikit-learn中的主成分分析(PCA)的使用的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  5. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

  6. 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】

    前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...

  7. 降维(一)----说说主成分分析(PCA)的源头

    降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------- ...

  8. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  9. 主成分分析PCA(转载)

    主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之 ...

  10. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

随机推荐

  1. C#多线程 线程池

    实例1:直接看看微软提供的代码 using System; using System.Threading; public class Example { public static void Main ...

  2. iOS开发网络篇—搭建本地服务器

    iOS开发网络篇—搭建本地服务器 一.简单说明 说明:提前下载好相关软件,且安装目录最好安装在全英文路径下.如果路径有中文名,那么可能会出现一些莫名其妙的问题. 提示:提前准备好的软件 apache- ...

  3. Maven+SSM搭建总结(非教程)

    记录我用Maven搭建Spring+SpringMVC+Mybatis项目的过程. 网上关于这个的详细教程有很多,但是优质而适合自己看的需要自己筛选以下我看过的几篇认为讲的比较详细的资源(照着做吧,做 ...

  4. C++编程优化心得(持续更新)

    1. 对齐原则.比如64位总线,每次寻址读取8B.编程时注意变量地址,尽量消耗总线最少的寻址次数.堆内存申请时,系统严格按照对齐原则分配,故而使用时候也尽量不要跨寻址边界. 2. 需要的时候,可为了效 ...

  5. IBatis.Net XML文件配置

    一.添加Provider.config <?xml version="1.0" encoding="utf-8"?> <providers x ...

  6. python leetcode 日记--231. Power of Two

    题目: Given an integer, write a function to determine if it is a power of two. class Solution(object): ...

  7. Objective-C学习笔记-第一天(2)

    Objective-C中的协议,相当于Java中的接口 参考:http://www.cnblogs.com/zzy0471/p/3894307.html 一个简单的协议遵循: PersonProtoc ...

  8. Genymotion--最快的安卓模拟器 测试与模拟APP应用必备

    命令行工具,Eclipse插件,多操作系统 1 易于安装,易于运行 超过10个虚拟设备 您很匆忙?您想测试市场的主要设备?使用我们的虚拟设备! 2 控制功能强大的传感器来测试您的应用程序 自定义你的测 ...

  9. 2015百度之星1002 查找有序序列(RMQ+主席树模板水过)

    题意:求在数列中能找到几个个长度为k 的区间,里面的 k 个数字排完序后是连续的. 思路:枚举范围,判断区间内是否有重复的数字(主席树),没有的话求区间最大-区间最小(RMQ),判断是否等于K,是的话 ...

  10. MxNet下训练alexnet(一)

    1.图像经过工具包中的 make_lsit im2rec 转换为可调用各式.rec,.bin都可以 2.然后使用train_imageXXXX进行训练,参数需要对应 3.利用保存的模型进行估计,测试 ...