Contestants Division
 

Description

In the new ACM-ICPC Regional Contest, a special monitoring and submitting system will be set up, and students will be able to compete at their own universities. However there’s one problem. Due to the high cost of the new judging system, the organizing committee can only afford to set the system up such that there will be only one way to transfer information from one university to another without passing the same university twice. The contestants will be divided into two connected regions, and the difference between the total numbers of students from two regions should be minimized. Can you help the juries to find the minimum difference?

Input

There are multiple test cases in the input file. Each test case starts with two integers N and M, (1 ≤ N ≤ 100000, 1 ≤ M ≤ 1000000), the number of universities and the number of direct communication line set up by the committee, respectively. Universities are numbered from 1 to N. The next line has N integers, the Kth integer is equal to the number of students in university numbered K. The number of students in any university does not exceed 100000000. Each of the following M lines has two integers st, and describes a communication line connecting university s and university t. All communication lines of this new system are bidirectional.

N = 0, M = 0 indicates the end of input and should not be processed by your program.

Output

For every test case, output one integer, the minimum absolute difference of students between two regions in the format as indicated in the sample output.

Sample Input

7 6
1 1 1 1 1 1 1
1 2
2 7
3 7
4 6
6 2
5 7
0 0

Sample Output

Case 1: 1

题意:

  给你一个n点的树,

  每个点有权值,现在让你删除一条边,使得剩下的两个子树的权值和差值最小,并输出

题解;

  我们以1为根做一遍DP

  求出dp[i] 以i为根节点的子树权值总和

  再枚举删除哪一条边即可

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e5+, M = 1e2+, mod = 1e9+, inf = 1e9+;
typedef long long ll; int n,m,a[N],b[N];
ll v[N],dp[N];
vector < int > G[N];
void dfs(int u,int fa) {
dp[u] = v[u];
for(int i=;i<G[u].size();i++) {
int to = G[u][i];
if(to == fa) continue;
dfs(to,u);
dp[u] += dp[to];
}
}
int main()
{
int cas = ;
while(~scanf("%d%d",&n,&m)) {
if(!n&&!m) break;
memset(dp,,sizeof(dp));
ll all = ;
for(int i=;i<=n;i++) scanf("%I64d",&v[i]),all+=v[i];
for(int i=;i<=n;i++) G[i].clear(); for(int i=;i<=m;i++) {
scanf("%d%d",&a[i],&b[i]);
G[a[i]].push_back(b[i]);G[b[i]].push_back(a[i]);
} dfs(,-);
ll ans = 1e18;
for(int i=;i<=m;i++)
if(all - min(dp[b[i]],dp[a[i]]) - min(dp[b[i]],dp[a[i]]) < )
ans = min(ans, - all + min(dp[b[i]],dp[a[i]]) + min(dp[b[i]],dp[a[i]]));
else ans = min(ans, all - min(dp[b[i]],dp[a[i]]) - min(dp[b[i]],dp[a[i]])); printf("Case %d: %I64d\n",cas++,ans);
}
}

POJ 3140 Contestants Division 树形DP的更多相关文章

  1. POJ 3140 Contestants Division (树dp)

    题目链接:http://poj.org/problem?id=3140 题意: 给你一棵树,问你删去一条边,形成的两棵子树的节点权值之差最小是多少. 思路: dfs #include <iost ...

  2. POJ 3140.Contestants Division 基础树形dp

    Contestants Division Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10704   Accepted:  ...

  3. poj 3140 Contestants Division(树形dp? dfs计数+枚举)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. POJ 3140 Contestants Division 【树形DP】

    <题目链接> 题目大意:给你一棵树,让你找一条边,使得该边的两个端点所对应的两颗子树权值和相差最小,求最小的权值差. 解题分析: 比较基础的树形DP. #include <cstdi ...

  5. POJ 3140 Contestants Division (树形DP,简单)

    题意: 有n个城市,构成一棵树,每个城市有v个人,要求断开树上的一条边,使得两个连通分量中的人数之差最小.问差的绝对值.(注意本题的M是没有用的,因为所给的必定是一棵树,边数M必定是n-1) 思路: ...

  6. POJ 3140 Contestants Division

    题目链接 题意很扯,就是给一棵树,每个结点有个值,然后把图劈成两半,差值最小,反正各种扯. 2B错误,导致WA了多次,无向图,建图搞成了有向了.... #include <cstdio> ...

  7. poj 3140 Contestants Division [DFS]

    题意:一棵树每个结点上都有值,现删掉一条边,使得到的两棵树上的数值和差值最小. 思路:这个题我直接dfs做的,不知道树状dp是什么思路..一开始看到数据规模有些后怕,后来想到long long 可以达 ...

  8. [poj3140]Contestants Division树形dp

    题意:切掉树上的某条边,使分开的两棵树上各点的权值和差值最小. 与hdu2196不同的是,此题是点权,其他无太大差别,注意数据范围. 先求出每个节点的子树权值和,然后自底向上dp即可.取$\min ( ...

  9. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

随机推荐

  1. MDI窗体

    1.设置父窗体 使用MDI窗体,需要先将父窗体的IsMdiContainer属性设置为True 2.生成用于MDI子窗体的窗体 1 frmTemp f1 = new frmTemp(); f1.Tex ...

  2. default constructor,copy constructor,copy assignment

     C++ Code  12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 ...

  3. iOS SHA1加密实现方法

    使用方法 先导入头文件 #import "SHA1.h" //SHA1测试 NSString* sh1=[SHA1 getSha1String:"]; NSLog(@&q ...

  4. linux 共享内存实现

    说起共享内存,一般来说会让人想起下面一些方法:1.多线程.线程之间的内存都是共享的.更确切的说,属于同一进程的线程使用的是同一个地址空间,而不是在不同地址空间之间进行内存共享:2.父子进程间的内存共享 ...

  5. 【leetcode】Set Matrix Zeroes(middle)

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. 思路:不能用 ...

  6. 【linux】find删除指定时间之前的文件

    今天磁盘满了,想删掉一些老的日志文件.开始想写个python脚本,转念一想,可能shell脚本好点.结果发现,根本不用写脚本,一个find指令就可以解决问题了. 先上指令 -exec rm {} \; ...

  7. Android Programming: Pushing the Limits -- Chapter 5: Android User Interface Operations

    多屏幕 自定义View 多屏幕 @.Android 4.2 开始支持多屏幕. @.举例: public class SecondDisplayDemo extends Activity { priva ...

  8. Weblogic监控指标

    http://blog.csdn.net/a_dreaming_fish/article/details/50592042

  9. Oracle数据库锁表及解锁进程

    下午代码迁移,更新数据库记录时for update语句无法执行,数据库被锁,KILL掉几个进程搞定. Oracle数据库操作中,我们有时会用到锁表查询以及解锁和kill进程等操作,那么这些操作是怎么实 ...

  10. C语言中do...while(0)的妙用

    在linux内核代码中,经常看到do...while(0)的宏,do...while(0)有很多作用,下面举出几个: 1.避免goto语句: 通常,如果一个函数开始要分配一些资源,然后如果在中途遇到错 ...