Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDva4V5A-uuOl84mg5zkTECichHX_AsN0mZalfI9BzDFOeNe-G###

❤ Simple linear regression

1. Y = β0 + β1*X + e

where:

Y - dependent variable (response)

X - independent variable (predictor/explanatory)

β0 - intercept

β1 - slope of the regression line

e - random error

2. Y' = b0 + b1*X

where: Y' - predicted value of Y

e = Y - Y'

3. Least squarea regression minizes the sum of the square of the errors and can be used to estimate b0 and b1.

4. Measuring the fit of the estimated model.

- The varibility of Y

SST (Sum of Squared Total): total variability about the mean, SST = sum((Y - mean(Y))^2);

SSE (Sum of Squared Error): variability about the regression line, SSE = sum(e^2) = sum((Y - mean(Y'))^2), SSE is unexplained varibility;

SSR (Sum of Squares due to Regression): variability that is explained, SSR = sum((Y' - mean(Y))^2), SSR is explained varibility.

Note that SST = SSE + SSR.

- Coefficient of determination

r^2: proportion of explained variability by the regression equation.

0 <= r^2 = 1 - SSE/SST = SSR/SST <= 1

- Correlation coefficient

r: strength of the relationship between X and Y.

-1 <= r <= 1

5. Assumptions in the regression model

Errors are independent, normally distributed, with the mean of zero, with a constant variance.

The assumptions can be tested by using residual analysis.

6. MSE (Mean Squared Error)

Estimation of error variance of the regression equation.

s^2 = MSE = SSE / (n - k - 1)

where:

n - number of observations in the sample

k - number of independent variables

Standard deviation of the regression: s = sqrt(MSE) is also frequently used.

❤ Test the model for significance: F-test

Used to statistically test the null hypothesis H0: there is no linear relationship between Y and X (i.e. β1 = 0).

If p value is low, then we regect H0 and conclude there is linear relationship:

F = MSR / MSE

where: MSR = SSR / k

Good regression model should have significant F value and high r^2 value.

Statistical test can be performed on the regression coefficients. H0: the βs are 0.

For a simple linear regression, the test for regression coefficient gives the same information as the ones given by F-test.

❤ ANOVA tables

The general form of the ANOVA table is helpful for understanding the interrelatedness of error terms.

❤ Multiple regression

Similar to the simple regression model, but there are more than one X in the multiple regression models.

Y' = b0 + b1*X1 + b2*X2 + ... + bn*Xn

Note that if indenpendent variables is correlate to each other, colinearity or multicolinearity will happen. This will cause problems when intepreate variables individually although the overall model estimation may still be good.

Regression analysis的更多相关文章

  1. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  2. Regression Analysis Using Excel

    Regression Analysis Using Excel Setup By default, data analysis add-in is not enabled. Follow the st ...

  3. Functional mechanism: regression analysis under differential privacy_阅读报告

    Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020 ...

  4. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  5. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  6. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  7. Multiple Regression

    Multiple Regression What is multiple regression? Multiple regression is regression analysis with mor ...

  8. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

  9. 7 Types of Regression Techniques

    https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/ What is Regression Anal ...

随机推荐

  1. AutoLayout自动布局

      原文转自http://www.cnblogs.com/xjf125/p/4895978.html 目录: 一.什么是AutoLayout? 二.创建autoLayout的方法 三.VFL语言   ...

  2. IOS学习资源收集--开发UI控件相关

    收集的一些本人了解过的iOS开发UI控件相关的代码资源(本文持续补充更新) 内容大纲: 1.本人在github上也上传了我分装好的一些可重复利用的UI控件 2.计时相关的自定义UILabel控件 正文 ...

  3. WeX5开源免费跨端开发工具-html5 app开发就用WeX5

    http://www.wex5.com/wex5/?utm_source=Baidu-0815

  4. 史上最详细“截图”搭建Hexo博客——For Windows

    http://angelen.me/2015/01/23/2015-01-23-%E5%8F%B2%E4%B8%8A%E6%9C%80%E8%AF%A6%E7%BB%86%E2%80%9C%E6%88 ...

  5. linux 学习随笔-文件目录管理

    1:绝对路径:写法一般由'/'根目录引起的 '/'表示根目录 2:相对路径:不是由'/'引起的  需要先进入/ 在进入其它文件 3:mkdir -p  +目录+文件夹 可以用于创建不存在的级联目录 不 ...

  6. json与jsonp的区别

    前言 由于Sencha Touch 2这种开发模式的特性,基本决定了它原生的数据交互行为几乎只能通过AJAX来实现. 当然了,通过调用强大的PhoneGap插件然后打包,你可以实现100%的Socke ...

  7. 你离月薪30K还差哪些?

    这类标题的文章,是不是很熟悉?你是不是冲着标题进来的? 类似这样的标题党文章,你应该看过很多,多数是泛泛而谈,没啥用- 今天老徐跟大家用几个真实案例,聊点有用的- 看完之后,你至少知道自己的差距是哪些 ...

  8. [20140504] ADO.NET客户端超时

    背景:      最近总是出现客户端超时,那么根据超时进行排查      System.Data.SqlClient.SqlException (0x80131904): Timeout expire ...

  9. 带进度条的 jQuery 文件拖放上传插件

    jQuery File Uploader :jQuery File Uploader 是一个 jQuery 文件拖放上传插件 兼容性判断 下载:https://github.com/danielm/u ...

  10. Python标准库(1) — itertools模块

    简介 官方描述:Functional tools for creating and using iterators.即用于创建高效迭代器的函数. itertools.chain(*iterable) ...