Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDva4V5A-uuOl84mg5zkTECichHX_AsN0mZalfI9BzDFOeNe-G###

❤ Simple linear regression

1. Y = β0 + β1*X + e

where:

Y - dependent variable (response)

X - independent variable (predictor/explanatory)

β0 - intercept

β1 - slope of the regression line

e - random error

2. Y' = b0 + b1*X

where: Y' - predicted value of Y

e = Y - Y'

3. Least squarea regression minizes the sum of the square of the errors and can be used to estimate b0 and b1.

4. Measuring the fit of the estimated model.

- The varibility of Y

SST (Sum of Squared Total): total variability about the mean, SST = sum((Y - mean(Y))^2);

SSE (Sum of Squared Error): variability about the regression line, SSE = sum(e^2) = sum((Y - mean(Y'))^2), SSE is unexplained varibility;

SSR (Sum of Squares due to Regression): variability that is explained, SSR = sum((Y' - mean(Y))^2), SSR is explained varibility.

Note that SST = SSE + SSR.

- Coefficient of determination

r^2: proportion of explained variability by the regression equation.

0 <= r^2 = 1 - SSE/SST = SSR/SST <= 1

- Correlation coefficient

r: strength of the relationship between X and Y.

-1 <= r <= 1

5. Assumptions in the regression model

Errors are independent, normally distributed, with the mean of zero, with a constant variance.

The assumptions can be tested by using residual analysis.

6. MSE (Mean Squared Error)

Estimation of error variance of the regression equation.

s^2 = MSE = SSE / (n - k - 1)

where:

n - number of observations in the sample

k - number of independent variables

Standard deviation of the regression: s = sqrt(MSE) is also frequently used.

❤ Test the model for significance: F-test

Used to statistically test the null hypothesis H0: there is no linear relationship between Y and X (i.e. β1 = 0).

If p value is low, then we regect H0 and conclude there is linear relationship:

F = MSR / MSE

where: MSR = SSR / k

Good regression model should have significant F value and high r^2 value.

Statistical test can be performed on the regression coefficients. H0: the βs are 0.

For a simple linear regression, the test for regression coefficient gives the same information as the ones given by F-test.

❤ ANOVA tables

The general form of the ANOVA table is helpful for understanding the interrelatedness of error terms.

❤ Multiple regression

Similar to the simple regression model, but there are more than one X in the multiple regression models.

Y' = b0 + b1*X1 + b2*X2 + ... + bn*Xn

Note that if indenpendent variables is correlate to each other, colinearity or multicolinearity will happen. This will cause problems when intepreate variables individually although the overall model estimation may still be good.

Regression analysis的更多相关文章

  1. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  2. Regression Analysis Using Excel

    Regression Analysis Using Excel Setup By default, data analysis add-in is not enabled. Follow the st ...

  3. Functional mechanism: regression analysis under differential privacy_阅读报告

    Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020 ...

  4. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  5. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  6. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  7. Multiple Regression

    Multiple Regression What is multiple regression? Multiple regression is regression analysis with mor ...

  8. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

  9. 7 Types of Regression Techniques

    https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/ What is Regression Anal ...

随机推荐

  1. android中实现跑马灯效果以及AutoCompleteTestView与MultiAutoCompleteTextView的学习

    跑马灯效果 1.用过属性的方式实现跑马灯效果 属性:                  android:singleLine="true" 这个属性是设置TextView文本中文字 ...

  2. IOS设计模式-观察者模式

    前言:23种软件设计模式中的观察者模式,也是在软件开发中,挺常用的一种设计模式.而在苹果开发中,苹果Cocoa框架已经给我们实现了这个设 计模式,那就是通知和KVO(Key-Value Observi ...

  3. Spark:一个高效的分布式计算系统

    概述 什么是Spark ◆ Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥 ...

  4. Photo Shop切图

    切图之前 哪些是需要切出来的? 修饰性的 (一般用在background属性) 图标.logo 有特殊效果的按钮  文字等 非纯色的背景 内容性的 (一般用在img标签) Banner.广告图片 文章 ...

  5. 看看Parallel中高度封装的三个方法,Invoke,For和ForEach

    说到.net中的并行编程,也许你的第一反应就是Task,确实Task是一个非常灵活的用于并行编程的一个专用类,不可否认越灵活的东西用起来就越 复杂,高度封装的东西用起来很简单,但是缺失了灵活性,这篇我 ...

  6. 无法连接到WMI提供程序 三种解决办法

    无法连接到WMI 提供程序 请注意,你只能使用SQL Server 配置管理器来管理SQL Server 2005服务器.找不到指定的模块.[0x8007007e] 解决方案1: 检查一下 windo ...

  7. SpringMvc-Httl-shiro的整合

    来到新的公司一个月,以前实习公司的用的是srping+hibernate+struts2,而在这里不在用的这些了,而是用的springMVC和jdbc模板来操作数据了,所以又用了一段时间去慢慢融入这个 ...

  8. docker-7 docker在阿里云的使用

    在传统模式中,开发团队在开发环境中完成软件开发,自己做了一遍单元测试, 测试通过,ᨀ交到代码版本管理库.运维把应用部署到测 试环境, QA 进行测试,没问题后通知部署人员发布到生产环境. 在上述过程中 ...

  9. java enum(枚举)的使用

    在实际编程中,往往存在着这样的“数据集”,它们的数值在程序中是稳定的,而且“数据集”中的元素是有限的. 例如星期一到星期日七个数据元素组成了一周的“数据集”,春夏秋冬四个数据元素组成了四季的“数据集” ...

  10. 《硝烟中的Scrum和XP》:作者主导Scrum过程的实战经验,四星推荐

    本书作者是开发团队Leader,本书记录了他带领团队实施Scurm过程中的经验教训.全书短小精悍,言简意赅. 以下是书中一些观点信息的摘抄: 1:Nokia总结出的迭代开发的基本要求:1.1:迭代要有 ...