欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。
第一种证明:
a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
第二种证明:
要证欧几里德算法成立,即证: gcd(a,b)=gcd(b,r),其中 gcd是取最大公约数的意思,r=a mod b
下面证 gcd(a,b)=gcd(b,r)
设 c是a,b的最大公约数,即c=gcd(a,b),则有 a=mc,b=nc,其中m,n为正整数,且m,n互为质数
由 r= a mod b可知,r= a- qb 其中,q是正整数,
则 r=a-qb=mc-qnc=(m-qn)c
b=nc,r=(m-qn)c,且n,(m-qn)互质(假设n,m-qn不互质,则n=xd, m-qn=yd 其中x,y,d都是正整数,且d>1
则a=mc=(qx+y)dc, b=xdc,这时a,b 的最大公约数变成dc,与前提矛盾,
所以n ,m-qn一定互质)
则gcd(b,r)=c=gcd(a,b)
得证。
算法的实现:
最简单的方法就是应用递归算法,代码如下:

1 int gcd(int a,int b)
2 {
3 if(b==0)
4 return a;
5 return
6 gcd(b,a%b);
7 }

代码可优化如下:
1 int gcd(int a,int b)
2 {
3 return b ? gcd(b,a%b) : a;
4 }
当然你也可以用迭代形式:

1 int Gcd(int a, int b)
2 {
3 while(b != 0)
4 {
5 int r = b;
6 b = a % b;
7 a = r;
8 }
9 return a;
10 }

扩展欧几里德算法
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里德的递归代码:

1 int exgcd(int a,int b,int &x,int &y)
2 {
3 if(b==0)
4 {
5 x=1;
6 y=0;
7 return a;
8 }
9 int r=exgcd(b,a%b,x,y);
10 int t=x;
11 x=y;
12 y=t-a/b*y;
13 return r;
14 }

扩展欧几里德非递归代码:

1 int exgcd(int m,int n,int &x,int &y)
2 {
3 int x1,y1,x0,y0;
4 x0=1; y0=0;
5 x1=0; y1=1;
6 x=0; y=1;
7 int r=m%n;
8 int q=(m-r)/n;
9 while(r)
10 {
11 x=x0-q*x1; y=y0-q*y1;
12 x0=x1; y0=y1;
13 x1=x; y1=y;
14 m=n; n=r; r=m%n;
15 q=(m-r)/n;
16 }
17 return n;
18 }

扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
(1)使用扩展欧几里德算法解决不定方程的办法:
对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:
p = p0 + b/Gcd(p, q) * t
q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
p = p0 + b/Gcd(p, q) * t
q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
应该改为:
p = p0 + b/Gcd(a, b) * t
q = q0 - a/Gcd(a,b) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。
在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),
p * a+q * b = c的其他整数解满足:

1 bool linear_equation(int a,int b,int c,int &x,int &y)
2 {
3 int d=exgcd(a,b,x,y);
4 if(c%d)
5 return false;
6 int k=c/d;
7 x*=k; y*=k; //求得的只是其中一组解
8 return true;
9 }

(2)用扩展欧几里德算法求解模线性方程的方法:
同余方程 ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。
求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)
设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程
a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。
所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。
ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0... d-1}。
设ans=x*(b/d),s=n/d;
方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;
相关证明:
证明方程有一解是: x0 = x'(b/d) mod n;
由 a*x0 = a*x'(b/d) (mod n)
a*x0 = d (b/d) (mod n) (由于 ax' = d (mod n))
= b (mod n)
证明方程有d个解: xi = x0 + i*(n/d) (mod n);
由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)
= (a*x0+a*i*(n/d)) (mod n)
= a * x0 (mod n) (由于 d | a)
= b
首先看一个简单的例子:
5x=4(mod3)
解得x = 2,5,8,11,14.......
由此可以发现一个规律,就是解的间隔是3.
那么这个解的间隔是怎么决定的呢?
如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.
我们设解之间的间隔为dx.
那么有
a*x = b(mod n);
a*(x+dx) = b(mod n);
两式相减,得到:
a*dx(mod n)= 0;
也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.
设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.
即a*dx = a*n/d;
所以dx = n/d.
因此解之间的间隔就求出来了.
代码如下:

1 bool modular_linear_equation(int a,int b,int n)
2 {
3 int x,y,x0,i;
4 int d=exgcd(a,n,x,y);
5 if(b%d)
6 return false;
7 x0=x*(b/d)%n; //特解
8 for(i=1;i<d;i++)
9 printf("%d\n",(x0+i*(n/d))%n);
10 return true;
11 }

(3)用欧几里德算法求模的逆元:
同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。
在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。
这时称求出的 x 为 a 的对模 n 乘法的逆元。
对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程
ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。
欧几里德与扩展欧几里德算法 Extended Euclidean algorithm的更多相关文章
- 欧几里德和扩展欧几里德详解 以及例题CodeForces 7C
欧几里德定理: 对于整数a,b来说,gcd(a, b)==gcd(b, a%b)==d(a与b的最大公约数),又称为辗转相除法 证明: 因为a是d的倍数,b是d的倍数:所以a%d==0:b%d==0: ...
- 算法:辗转相除法【欧几里德算法(Euclidean algorithm)】
1.来源 设两数为a.b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1).若r1=0,则(a,b)=b:若r1≠0,则再用b除以 ...
- 扩展欧几里得算法(extended Euclidean algorithm)的一个常犯错误
int exGcd(int x,int y,int& a,int& b) //ax+by=gcd(x,y) { ; b=; return x; } int res=exGcd(y,x% ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- 欧几里德欧几里德原理和扩展的原则,(Euclidean Theory and Extended Euclidean Theory)学习笔记
题记:这是我第四次审查扩展欧几里德原理,由于不经常使用.当你想使用,可以不记得细节,经常检查信息,所以,简单地梳理这一原则和扩展欧几里德的原则,以博客存档以备查用. 一个.欧几里德原理 欧几里德原理( ...
- ACM_扩展欧几里德算法
<pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
随机推荐
- 烂泥:使用snmpwalk采集设备的OID信息
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 打算开始学习有关监控方面的知识,但是现在很多监控系统都是根据SNMP进行的.而SNMP监控的性能指标很多都是通过snmpwalk采集设备的OID信息得到 ...
- LeetCode #329. Longest Increasing Path in a Matrix
题目 Given an integer matrix, find the length of the longest increasing path. From each cell, you can ...
- redis安装及基础操作(1)
============================================================= 编译安装 0.环境 Linux:centos6.5 redis:3.0.5 ...
- FineReport层式报表解决大数据集展示问题攻略
本文以填报报表为例,通过分页的方式,来解决大数据集展示的问题. 实现的思想就是通过在SQL里筛选部分数据库数据,以达到浏览器可以合理的展示报表页面.(数据分段,语句我这采用的是MYSQL,如果要用其他 ...
- [转]12篇学通C#网络编程——第二篇 HTTP应用编程(上)
本文转自:http://www.cnblogs.com/huangxincheng/archive/2012/01/09/2316745.html 我们学习网络编程最熟悉的莫过于Http,好,我们就从 ...
- MMORPG大型游戏设计与开发(客户端架构 part12 of vegine)
在游戏中的交互过程中输入是一个必不可少的过程,比如登陆的时候需要用户输入用户名与密码,就算是单机游戏很多时候也要求用户输入一个用户名作为存档的依据.网络游戏中没有了输入,只用鼠标来交互是不切实际的,因 ...
- Java方法区和运行时常量池溢出问题分析
运行时常量池是方法区的一部分,方法区用于存放Class的相关信息,如类名.访问修饰符.常量池.字段描述.方法描述等. String.intern()是一个native方法,它的作用是:如果字符串常量池 ...
- 用FLASH,安智和IOS打电话方法
打电话?你直接urlrequest不就打出去了吗普通网页http://xxx电话tel://xxx要啥ane
- [No00005F]读书与心智
读千卷书,行万里路,不够…还得有个对谈者相伴,才更有意思.十月七号晚上,与友人谈读书,线上直播,三百观众相伴,四小时畅谈,不亦乐乎! Part1:读书的载体 散发出最浓郁的知识芬芳和铭刻下最隽永的历史 ...
- [No000038]操作系统Operating Systems -CPU
管理CPU ,先要使用CPU… CPU 的工作原理 CPU上电以后发生了什么? 自动的取指 — 执行 CPU 怎么工作? CPU怎么管理? 管理CPU 的最直观方法 设好PC 初值就完事! 看看这样做 ...