S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7262    Accepted Submission(s): 3074

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

 
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
 
Sample Output
LWW
WWL
 
Source
题意:m堆石子  玩家每次可以从某一堆中取出si个石子 不能取则输
题解:初步学习sg函数 sg[i]为 i的后继状 的sg值中 没有出现过的非负最小值。
sg异或值为0则后手胜
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll MOD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
int k;
int sg[];
int a[];
int flag[];
int q,m,exm;
void init()
{
sg[]=;
for(int i=;i<=;i++)
{
memset(flag,,sizeof(flag));
for(int j=;j<=k;j++)
{
if(i-a[j]>=)
{
flag[sg[i-a[j]]]=;
}
}
for(int j=;;j++)
{
if(flag[j]==){
sg[i]=j;
break;
}
}
}
}
int main()
{
while(scanf("%d",&k)!=EOF)
{
if(k==)
break;
for(int i=;i<=k;i++)
scanf("%d",&a[i]);
init();
scanf("%d",&q);
for(int i=;i<=q;i++)
{
scanf("%d",&m);
int ans=;
for(int j=;j<=m;j++)
{
scanf("%d",&exm);
ans^=sg[exm];
}
if(ans==)
printf("L");
else
printf("W");
}
printf("\n");
}
return ;
}

HDU 1536 sg函数的更多相关文章

  1. hdu 1536 SG函数模板题

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  2. hdu 2147 SG函数打表(手写也可以) 找规律

    kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/1000 K (Java/Others) Total ...

  3. hdu 1848(SG函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  4. hdu 1847(SG函数,巴什博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. HDU 1848 SG函数博弈

    Fibonacci again and again Problem Description   任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1 ...

  6. hdu 2999 sg函数(简单博弈)

    Stone Game, Why are you always there? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/ ...

  7. hdu 1536 sg (dfs实现)

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. SG 函数初步 HDU 1536 &amp;&amp; HDU 1944

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=1944 pid=1536"> http://acm.hdu.edu.cn/showpr ...

  9. S-Nim HDU 1536 博弈 sg函数

    S-Nim HDU 1536 博弈 sg函数 题意 首先输入K,表示一个集合的大小,之后输入集合,表示对于这对石子只能去这个集合中的元素的个数,之后输入 一个m表示接下来对于这个集合要进行m次询问,之 ...

随机推荐

  1. Zip it

    https://www.codewars.com/kata/zip-it/train/csharp using System; using System.Collections.Generic; us ...

  2. HTTP笔记之一

    1  URL 统一资源定位符(URL)是资源标识符最常见的格式.大部分的URL都遵循一种标准格式,这种格式包含三个部分. URL的第一部分:方案(scheme),说明了访问资源所使用的协议类型.通常是 ...

  3. ie6兼容之绝对定位元素内容为空时高度问题

    正常显示: ie6下显示: line6元素高度最小16px; 解决办法: 添加内容在空的div里,并且设置行高即可. 其中,非ie6浏览器不需要再空的div里加无谓的内容,再次需要用“条件注释”来解决 ...

  4. java实现LIS算法,出操队形问题

    假设有序列:2,1,3,5,求一个最长上升子序列就是2,3,5或者1,3,5,长度都为3. LIS算法的思想是: 设存在序列a. ① 如果只有一个元素,那么最长上升子序列的长度为1: ② 如果有两个元 ...

  5. 【转】linux命令详解:md5sum命令

    [转]linux命令详解:md5sum命令 转自:http://blog.itpub.net/29320885/viewspace-1710218/ 前言 在网络传输.设备之间转存.复制大文件等时,可 ...

  6. iOS用ASIHttpRequest上传

    1.新建一个single view工程,导入ASIHttpRequest库,导入MobileCoreServices.CFNetwork.SystemConfiguration和libz1.2.5.d ...

  7. OpenAl编程入门:播放一段音频

    OpenAl编程入门 关于OpenAl我就不多介绍了,这两篇说明对于初步了解已经足够了:http://baike.baidu.com/view/1355367.htmhttp://en.wikiped ...

  8. java程序

    package Dome3; import java.awt.Button; import java.awt.FlowLayout; import java.awt.Frame; import jav ...

  9. org/objectweb/asm/Type异常解决办法

    关于java.lang.NoClassDefFoundError: org/objectweb/asm/Type 调试SPRING MVC(或者整合SSH)的时候遇到了org/objectweb/as ...

  10. 微信网页授权,微信登录,oauth2

    微信官方文档: http://mp.weixin.qq.com/wiki 微信公众平台OAuth2.0授权详细步骤如下: 1. 用户关注微信公众账号.2. 微信公众账号提供用户请求授权页面URL.3. ...