S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7262    Accepted Submission(s): 3074

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

 
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
 
Sample Output
LWW
WWL
 
Source
题意:m堆石子  玩家每次可以从某一堆中取出si个石子 不能取则输
题解:初步学习sg函数 sg[i]为 i的后继状 的sg值中 没有出现过的非负最小值。
sg异或值为0则后手胜
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll MOD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
int k;
int sg[];
int a[];
int flag[];
int q,m,exm;
void init()
{
sg[]=;
for(int i=;i<=;i++)
{
memset(flag,,sizeof(flag));
for(int j=;j<=k;j++)
{
if(i-a[j]>=)
{
flag[sg[i-a[j]]]=;
}
}
for(int j=;;j++)
{
if(flag[j]==){
sg[i]=j;
break;
}
}
}
}
int main()
{
while(scanf("%d",&k)!=EOF)
{
if(k==)
break;
for(int i=;i<=k;i++)
scanf("%d",&a[i]);
init();
scanf("%d",&q);
for(int i=;i<=q;i++)
{
scanf("%d",&m);
int ans=;
for(int j=;j<=m;j++)
{
scanf("%d",&exm);
ans^=sg[exm];
}
if(ans==)
printf("L");
else
printf("W");
}
printf("\n");
}
return ;
}

HDU 1536 sg函数的更多相关文章

  1. hdu 1536 SG函数模板题

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  2. hdu 2147 SG函数打表(手写也可以) 找规律

    kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/1000 K (Java/Others) Total ...

  3. hdu 1848(SG函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  4. hdu 1847(SG函数,巴什博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. HDU 1848 SG函数博弈

    Fibonacci again and again Problem Description   任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1 ...

  6. hdu 2999 sg函数(简单博弈)

    Stone Game, Why are you always there? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/ ...

  7. hdu 1536 sg (dfs实现)

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. SG 函数初步 HDU 1536 &amp;&amp; HDU 1944

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=1944 pid=1536"> http://acm.hdu.edu.cn/showpr ...

  9. S-Nim HDU 1536 博弈 sg函数

    S-Nim HDU 1536 博弈 sg函数 题意 首先输入K,表示一个集合的大小,之后输入集合,表示对于这对石子只能去这个集合中的元素的个数,之后输入 一个m表示接下来对于这个集合要进行m次询问,之 ...

随机推荐

  1. HDU 5734 Acperience(返虚入浑)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  2. hdu3341Lost's revenge(ac自动机+dp)

    链接 类似的dp省赛时就做过了,不过这题卡内存,需要把当前状态hash一下,可以按进制来算出当前的状态,因为所有的状态数是不会超过10*10*10*10的,所以完全可以把这些存下来. 刚开始把trie ...

  3. MFC编程入门之八(对话框:创建对话框类和添加控件变量)

    创建好对话框资源后要做的就是生成对话框类了.生成对话框类主要包括新建对话框类.添加控件变量和控件的消息处理函数. 例程Addition是基于对话框的程序,所以程序自动创建了对话框模板IDD_ADDIT ...

  4. Linux中关于安装包的分析。——Arvin

    初接解LINUX的,同样都是for linux,但rpm.tar.gz.deb包还是有很大区别的,这种区别可使安装过程进行不下去.那我们应该下载什么格式的包呢? rpm包-在红帽LINUX.SUSE. ...

  5. Knockout学习笔记之二($root,$parent及$data的区别)

    以下是我从Google上找到的一个例子,非常生动形象,我修改了部分代码,具体内容如下: 对于$root 与$parent的区别: $root refers to the view model appl ...

  6. HTTP状态码及其含义

    下表显示了常见的HTTP 1.1状态代码以及它们对应的状态信息和含义.应当谨慎地使用那些只有HTTP 1.1支持的状态代码,因为许多浏览器还只能够支持HTTP 1.0.如果你使用了HTTP 1.1特有 ...

  7. 使用 Java Service Wrapper 启动java后台进程服务

    Java Service Wrapper (http://wrapper.tanukisoftware.com/doc/english/product-overview.html)可以很方便得在各个平 ...

  8. iOS开发拓展篇—音频处理(音乐播放器3)

    iOS开发拓展篇—音频处理(音乐播放器3) 说明:这篇文章主要介绍音频工具类和播放工具类的封装. 一.控制器间数据传递 1.两个控制器之间数据的传递 第一种方法:self.parentViewCont ...

  9. web.xml的初始化参数

    web.xml的初始化参数 ---------首先声明,这里所介绍的是web中context-param,init-param参数的初始化配置---------- ------------------ ...

  10. 【转】nginx+tomcat+memcached (msm)实现 session同步复制

    出现session不同步时,请放到content.xml中,实际验证有效: tomcat + memcached + nginx 实现session共享 这里重点强调如何实现linux服务器上 服务器 ...