考虑DP,设$f[i][j]$表示考虑了$a[1..i]$和$b[1..j]$的最小代价。

若$a[i]==b[j]$,则$f[i][j]=\min(f[i-1][j],f[i][j-1])+1$。

否则找到最大的$t$,满足$x$和$y$往前$t$个均不相等,此时$f[i][j]=f[i-t-1][j-t-1]+t$。

对于$t$,可以通过在相应差值的序列中二分查找得到。

对于DP的计算,可以通过搜索,并将那$n$个$a[i]==b[j]$的状态记忆化。

因为对于每个没有记忆化的状态,均可以在$O(\log n)$的时间内转化为那$n$个状态,所以总时间复杂度为$O(n\log n)$。

#include<cstdio>
const int N=1000010,BUF=13778000;
int n,m,i,j,a[N],b[N],c[N],f[N],g[N<<1],nxt[N],st[N<<1],en[N<<1],q[N];char Buf[BUF],*buf=Buf;
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
inline void add(int x,int y){nxt[y]=g[x];g[x]=y;}
inline int min(int a,int b){return a<b?a:b;}
inline int pre(int l,int r,int x){
int t=0,mid;
while(l<=r)if(q[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
return q[t];
}
int dp(int x,int y){
if(!x||!y)return x+y;
if(a[x]==b[y])return f[x]?f[x]:f[x]=min(dp(x-1,y),dp(x,y-1))+1;
int t=pre(st[x-y+n],en[x-y+n],x);
return t?dp(t,y-x+t)+x-t:(x>y?x:y);
}
int main(){
fread(Buf,1,BUF,stdin);read(n);
for(i=1;i<=n;i++)read(a[i]);
for(i=1;i<=n;i++)read(b[i]),c[b[i]]=i;
for(i=n;i;i--)add(i-c[a[i]]+n,i);
for(i=1;i<n+n;en[i++]=m)for(st[i]=m+1,j=g[i];j;j=nxt[j])q[++m]=j;
return printf("%d",dp(n,n)),0;
}

  

BZOJ3072 : [Pa2012]Two Cakes的更多相关文章

  1. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  2. hdu 5997 rausen loves cakes(线段数合并+启发式修改)

    题目链接:hdu 5997 rausen loves cakes 题意: 给你n个点,每个点有一个颜色,现在有两个操作,第一个操作,将颜色x改为颜色y,第二个操作,询问[x,y]区间有多少颜色段(颜色 ...

  3. BZOJ3498PA2009 Cakes——三元环

    题目描述 N个点m条边,每个点有一个点权a.对于任意一个三元环(j,j,k)(i<j<k),它的贡献为max(ai,aj,ak) 求所有三元环的贡献和.N<100000,,m< ...

  4. Codeforces Round #542 B Two Cakes

    B. Two Cakes time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  5. [BZOJ 3498] [PA 2009] Cakes

    Description \(n\) 个点 \(m\) 条边,每个点有一个点权 \(a_i\). 对于任意一个三元环 \((i,j,k)(i<j<k)\),它的贡献为 \(\max(a_i, ...

  6. [Codeforces-911B] - Two Cakes

    B. Two Cakestime limit per test 1 secondmemory limit per test 256 megabytesinput standard inputoutpu ...

  7. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  8. Codeforces Round #413 A. Carrot Cakes

    A. Carrot Cakes time limit per test   1 second memory limit per test   256 megabytes   In some game ...

  9. 【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

    [BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sam ...

随机推荐

  1. 修改searchbar 取消 字体 颜色

    UIButton *cancelButton; UIView *topView = self.searchDisplayController.searchBar.subviews[]; for (UI ...

  2. STL_advance distance prev next

    template<class InputIterator> typename iterator_traits<InputIterator>::difference_type d ...

  3. 测试Open Live writer

    这个东西究竟是怎么用的啊,看起来好高端的样子...

  4. Java集合源码学习(四)HashMap分析

    ArrayList.LinkedList和HashMap的源码是一起看的,横向对比吧,感觉对这三种数据结构的理解加深了很多. >>数组.链表和哈希表结构 数据结构中有数组和链表来实现对数据 ...

  5. 【翻译十三】java-并发之饥饿与活锁

    Starvation and Livelock Starvation and livelock are much less common a problem than deadlock, but ar ...

  6. centos6.4下安装php的imagick和imagemagick扩展教程

    imagick在centos6.4的安装方法: .安装ImageMagick 代码如下: wget http://soft.vpser.net/web/imagemagick/ImageMagick- ...

  7. 源码方式安装mysql5.5

    mysql5.5开始,源码配置编译工具configure变成了cmake,所以先要去把cmake装上.并安装make,bison,cmake,gcc-c++,ncurses的包 去http://www ...

  8. win7 快捷键

    F F1 显示辅助 F2 重命名选定项目 F3 搜索文件或文件夹 F4 在 Windows 资源管理器中显示地址栏列表 F5 刷新活动窗口 F6 在窗口中或桌面上循环切换屏幕元素 F10 激活活动程序 ...

  9. jbox使用总结

    jbox是一个不错的插件 当使用get打开新页面的时候,可以使用h.对像ID来获得对像ID的值 Js代码 js代码: /** * @description: test * @author: BrinP ...

  10. Android之Inflate()

      Inflate()作用就是将xml定义的一个布局找出来,但仅仅是找出来而且隐藏的,没有找到的同时并显示功能.最近做的一个项目就是这一点让我迷茫了好几天. Android上还有一个与Inflate( ...