B. Moodular Arithmetic
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers k and p, where p is an odd prime number, the functional equation states that

for some function . (This equation should hold for any integer x in the range 0 top - 1, inclusive.)

It turns out that f can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions f that satisfy this equation. Since the answer may be very large, you should print your result modulo 109 + 7.

Input

The input consists of two space-separated integers p and k (3 ≤ p ≤ 1 000 000, 0 ≤ k ≤ p - 1) on a single line. It is guaranteed that p is an odd prime number.

Output

Print a single integer, the number of distinct functions f modulo 109 + 7.

Sample test(s)
input
3 2
output
3
input
5 4
output
25
Note

In the first sample, p = 3 and k = 2. The following functions work:

  1. f(0) = 0, f(1) = 1, f(2) = 2.
  2. f(0) = 0, f(1) = 2, f(2) = 1.
  3. f(0) = f(1) = f(2) = 0.

题意:给出p,k,问满足f(kx % p) = k*f(x) % p,其中0 <= f(i) < p的映射有多少种。

分析:显然f(0) = 0

考虑其他的,

如果我们确定了一个f(i),我们会通过f(i)确定很多的映射,比如f(ki % p), f(k^2 i % p).....

什么时候会停下来?

当k^t = 1 (mod p)时会停下来。

那么就是说我们每确定一个数,就有t个数确定了。

这里的t可以通过枚举算出。

就是说我们一共只能确定(p-1)/t个数,每个数有p种可能。

ans=p^((p-1)/t)

 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} int p, k;
vector<int> factor; inline void Input()
{
scanf("%d%d", &p, &k);
} inline int Power(int b, int t, int mod = )
{
int ret = ;
while(t)
{
if(t & ) ret = (1LL * ret * b) % mod;
b = (1LL * b * b) % mod, t >>= ;
}
return ret;
} inline void Ext_Gcd(int a, int b, int &x, int &y)
{
if(b == ) x = , y = ;
else
{
Ext_Gcd(b, a % b, x, y);
int t = x;
x = y;
y = t - (a / b) * x;
}
} inline void Solve()
{
if(k == )
{
printf("%d\n", Power(p, p - ));
return;
} if(k == )
{
printf("%d\n", Power(p, p));
return;
} /*int x, y;
Ext_Gcd(k, p, x, y);
if(y <= 0)
{
int t = y / k + 1;
x -= t * p, y += t * k;
} int s;
LL t;
for(s = 1, t = k; ((t - x) % p + p) % p != 0; t *= k, s++) ;*/ int t = p - ;
for(int i = ; i * i <= t; i++)
if(t % i == )
{
factor.pub(i);
factor.pub(t / i);
}
sort(factor.begin(), factor.end()); int len = factor.size(), s;
for(int i = ; i < len; i++)
if(Power(k, factor[i], p) == )
{
s = factor[i];
break;
} int ans = Power(p, (p - ) / s);
printf("%d\n", ans);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}

CF# 334 Moodular Arithmetic的更多相关文章

  1. Codeforces Round #334 (Div. 2) D. Moodular Arithmetic 环的个数

    D. Moodular Arithmetic Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/60 ...

  2. Codeforces Round #334 (Div. 1) B. Moodular Arithmetic

    B - Moodular Arithmetic 题目大意:题意:告诉你p和k,其中(0<=k<=p-1),x属于{0,1,2,3,....,p-1},f函数要满足f(k*x%p)=k*f( ...

  3. CF 334 div.2-D Moodular Arithmetic

    思路: 易知k = 0的时候答案是pp-1,k = 1的时候答案是pp. 当k >= 2的时候,f(0) = 0,对于 1 <= n <= p - 1,如果f(n)确定,由题意可知f ...

  4. CF 1114 E. Arithmetic Progression

    E. Arithmetic Progression 链接 题意: 交互题. 有一个等差序列,现已打乱顺序,最多询问60次来确定首项和公差.每次可以询问是否有严格大于x的数,和查看一个位置的数. 分析: ...

  5. CF# 334 Lieges of Legendre

    C. Lieges of Legendre time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  6. CF# 334 Alternative Thinking

    A. Alternative Thinking time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. codeforce 603B - Moodular Arithmetic

    题意:给出方程 f(kx%p)=kf(x)%p ,f:A->B,不同的映射函数f有几种,其中f,A,B值域为{0,1,2..p-1},p为素数(除了2),k为小于p的一个常数. 思路:明显是求循 ...

  8. 【codeforces 604D】Moodular Arithmetic

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. cf Round 603

    A.Alternative Thinking(思维) 给出一个01串,你可以取反其中一个连续子串,问取反后的01子串的最长非连续010101串的长度是多少. 我们随便翻一个连续子串,显然翻完之后,对于 ...

随机推荐

  1. java删除被占用的文件

    boolean result = f.delete();//判断是否删除完毕 if(!result) { System.gc();//系统进行资源强制回收 f.delete; }

  2. UITableView和UICollectionView的方法学习一

    参考资料 UITableView UICollectionView UICollectionViewDataSource UICollectionViewDelegate UICollectionVi ...

  3. 二、JavaScript语言--JS基础--JavaScript进阶篇--选项卡切换效果

    利用JavaScript知识,实现选项卡切换的效果. 效果图: 文字素材: 房产: 275万购昌平邻铁三居 总价20万买一居     200万内购五环三居 140万安家东三环     北京首现零首付楼 ...

  4. 关于plsql连接oracle数据库session失效时间设置

    http://bbs.csdn.net/topics/350152441 http://www.linuxidc.com/Linux/2015-09/123286.htm

  5. SQLServer多表连接查询

    双表内部连接查询 select wName,dName from DepartMent,Worker where DepartMent.dID=Worker.did select wName,dNam ...

  6. 18.中介者模式(Mediator Pattern)

    using System; namespace Test { class Program { /// <summary> /// 中介者模式,定义了一个中介对象来封装一系列对象之间的交互关 ...

  7. JavaWeb学习之什么是Servlet、如何使用servlet、为什么这样使用、servlet的虚拟路径、关于缺省Servlet(2)

    1.什么是Servlet? * 服务器端Java程序,servlet需要交给服务器来运行. * 与javax.servlet.Servlet接口有关的java程序 2.如何使用servlet?[必须] ...

  8. android 入门-微博分享

    [2015-03-11 13:40:32 - WeiboSDK] Unable to resolve target 'android-8' 修改project.properties  target=a ...

  9. phpMailer在thinkPHP框架中邮件发送

    资源下载地址:http://pan.baidu.com/s/1c0kAoeO 提取码:ry5v 关键代码:application/Common/Common/funciton.php <?php ...

  10. hpunix下11gRac的安装

    一.检查环境 1.操作系统版本# uname -a 2.补丁包三大补丁包#swlist -l bundle|grep QPKAPPS#swlist -l bundle|grep QPKBASE#swl ...