[本文链接]

http://www.cnblogs.com/hellogiser/p/reservoir-sampling.html

问题起源于编程珠玑Column 12中的题目10,其描述如下:

How could you select one of n objects at random, where you see the objects sequentially but you do not know the value of n beforehand? For concreteness, how would you read a text file, and select and print one random line, when you don’t know the number of lines in advance?

(1)在不知道文件总行数n的情况下,如何从文件中随机的抽取一行?

解:先选择第一个行,并使用1/2的概率选择第二个行,使用1/3的概率选择第三行,使用1/i的概率选择第i行,以此类推。在过程结束时,每个对像被选中的概率都是1/n。

用P(i)表示处于第i行时第i行被选中的概率。

P(1)=1

P(2)=1/2

P(3)=1/3

则选择第3行的时候,对于第1行来讲选中的概率=第一行被选中概率*第二行没被选中*第3行没被选中概率。

p(1)all=P(1)*(1-P(2))(1-P(3))=1/3

p(2)all=P(2)*(1-P(3))=1/3

p(3)all=P(3)=1/3

证明:

1最终被选中的概率:1被选中的概率*2没有被选中的概率*3没有被选中的概率*…*n没有被选中的概率

p(1)all=1*(1-1/2)(1-1/3)*…*(1-1/n)=1/n

m最终被选中的概率:m被选中的概率*m+1没有被选中的概率*m+2没有被选中的概率*…*n没有被选中的概率(1<=m<n)

p(m)all=1/m*[1-1/(m+1)][1-1/(m+2)]*…*[1-1/n]=1/n

(2)对其进行扩展,即如何从未知或者很大样本空间随机地取k个数?

给你一个长度为N的链表。N很大,但你不知道N有多大。你的任务是从这N个元素中随机取出k个元素。你只能遍历这个链表一次。你的算法必须保证取出的元素恰好有k个,且它们是完全随机的(出现概率均等)。

解:先选中前k个, 从第k+1个元素到最后一个元素为止, 以k/i (i=k+1, k+2,...,N) 的概率选中第i个元素,并且随机替换掉一个原先选中的元素, 这样遍历一次得到k个元素, 可以保证完全随机选取。

证明:

n最终被选中的概率: n被选中的概率*[(n+1)没有被选中的概率+(n+1)被选中概率*n没被替换的概率]

p(n)all=k/n*[(1-k/(n+1))+k/(n+1)*(1-1/k)]=k/(n+1)

【参考】

http://www.cnblogs.com/ttltry-air/archive/2012/08/10/2632215.html

[本文链接]

http://www.cnblogs.com/hellogiser/p/reservoir-sampling.html

68. 蓄水池抽样(Reservoir Sampling)的更多相关文章

  1. 随机抽样问题(蓄水池问题Reservoir Sampling)

    转自:孤影醉残阳 http://hi.baidu.com/siyupy/item/e4bb218fedf4a0864414cfad 随机抽样问题(蓄水池问题Reservoir Sampling) 随即 ...

  2. 水塘抽样(Reservoir Sampling)问题

    水塘抽样是一系列的随机算法,其目的在于从包含n个项目的集合S中选取k个样本,其中n为一很大或未知的数量,尤其适用于不能把所有n个项目都存放到主内存的情况. 在高德纳的计算机程序设计艺术中,有如下问题: ...

  3. 水库抽样Reservoir Sampling(蓄水池问题)

      知识复习 空间亚线性算法:由于大数据算法中涉及到的数据是海量的,数据难以放入内存计算,所以一种常用的处理办法是不对全部数据进行计算,而只向内存里放入小部分数据,仅使用内存中的小部分数据,就可以得到 ...

  4. Reservoir Sampling 蓄水池采样算法

    https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...

  5. Reservoir Sampling - 蓄水池抽样

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  6. Reservoir Sampling - 蓄水池抽样问题

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  7. 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)

    蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...

  8. 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)

    问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...

  9. 蓄水池抽样算法 Reservoir Sampling

    2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...

随机推荐

  1. [问题2014A11] 复旦高等代数 I(14级)每周一题(第十三教学周)

    [问题2014A11]  设 \(n\) 阶方阵 \(A,B\) 满足: \((A+B)^2=A+B\), \(\mathrm{r}(A+B)=\mathrm{r}(A)+\mathrm{r}(B)\ ...

  2. Oracle使用经验总结

    oracle数据库是一种大型数据库系统,一般应用于商业,政府部门,它的功能很强大,能够处理大批量的数据,在网络方面也用的非常多.Oracle数据库管理系统是一个以关系型和面向对象为中心管理数据的数据库 ...

  3. Mac下用g++编译opencv程序报错

    问题描述: 在Mac下安装好opencv, 安装:    bash  brew install opencv      写了一个opencv程序:    ``` C++ //作用就是:取视频的每一帧, ...

  4. ExceptionExtensions

    public static class ExceptionExtensions { public static IEnumerable<Exception> GetAllException ...

  5. 个人练习--gif图流程

    1:素材图片a  图片b 2:窗口--->时间轴/动画 3:复制所选帧--->设置帧延迟 4:文件--->存储为WEB格式--->gif格式

  6. Material Design风格的水波涟漪效果(Ripple Effect)的实现

    Material Design是Google在2014年Google I/O大会上推出的一套全新的设计语言,经过接近两年的发展,可谓是以燎原之势影响着整个设计交互生态,和Material Design ...

  7. linux进程编程:子进程创建及执行函数简介

    linux进程编程:子进程创建及执行函数简介 子进程创建及执行函数有三个: (1)fork();(2)exec();(3)system();    下面分别做详细介绍.(1)fork()    函数定 ...

  8. cxf的soap风格+spirng4+maven 服务端

    简介 SOAP 比较复杂,基于XML,有对应规范:REST利用HTTP请请求方式GET,POST,PUT,delete约定具体操作.简单的说,SOAP通过传输XML,XML定义了请求和响应的具体数据, ...

  9. C#日常知识

    常量: 定义常量:const; 条件运算符: 表达式1?表达式2:表达式3[如果正确则执行表达式2,不正确执行表达式3] (例如:int result; result = 5>4?100:200 ...

  10. sql server 自增长id 允许插入显示值

    --允许插入显示插入主键id的值SET IDENTITY_INSERT [T0002_SType] ON 执行insert插入语句------------------ --关闭 插入显示值SET ID ...