BZOJ 1415

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int Maxn=;
int t[Maxn],n,m,S,T,now,p[Maxn][Maxn],head[Maxn],dis[Maxn],u,v,cnt;
double f[Maxn][Maxn];
struct EDGE
{
int to,next;
}edge[Maxn<<];
inline void Add(int u,int v)
{edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt++;}
void Dfs(int u,int top)
{
for (int i=head[u];i!=-;i=edge[i].next)
if (dis[edge[i].to]==- || dis[edge[i].to]>dis[u]+ || (dis[edge[i].to]==dis[u]+ && p[now][edge[i].to]>top))
{
dis[edge[i].to]=dis[u]+;
p[now][edge[i].to]=top;
Dfs(edge[i].to,top);
}
}
double F(int S,int T)
{
if (f[S][T]!=) return f[S][T];
if (S==T) return ;
if (p[p[S][T]][T]==T || p[S][T]==T) return ;
double res=;
for (int i=head[T];i!=-;i=edge[i].next)
res+=F(p[p[S][T]][T],edge[i].to);
res+=F(p[p[S][T]][T],T);
res/=(double)(t[T]+1.0);
res+=;
return f[S][T]=res;
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%d%d",&S,&T);
memset(head,-,sizeof(head));
for (int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
Add(u,v),Add(v,u);
t[u]++; t[v]++;
} for (int i=;i<=n;i++)
{
memset(dis,-,sizeof(dis));
dis[i]=;
for (int j=head[i];j!=-;j=edge[j].next)
{
now=i;
dis[edge[j].to]=;
Dfs(edge[j].to,edge[j].to);
}
for (int j=head[i];j!=-;j=edge[j].next) p[i][edge[j].to]=edge[j].to;
}
printf("%.3lf\n",F(S,T));
return ;
}

C++

BZOJ 1419

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int Maxn=;
double f[][Maxn];
int R,B,cur;
inline double Max(double x,double y) {return x>y?x:y;}
int main()
{
scanf("%d%d",&R,&B);
for (int i=;i<=R;i++)
{
cur^=;
for (int j=;j<=B;j++)
{
if (i==) {f[cur][j]=; continue;}
if (j==) {f[cur][j]=f[cur^][j]+;continue;}
f[cur][j]=Max(,(f[cur^][j]+1.0)*((double)(i)/(double)(i+j))+(f[cur][j-]-1.0)*((double)(j)/(double)(i+j))); }
}
printf("%.6lf\n",f[cur][B]-5e-);
return ;
}

C++

算法合集之《浅析竞赛中一类数学期望问题的解决方法》中有对题目的讲解。

HDU 4405 期望貌似是倒着推的,F[i]=∑F[i+k](k=1~6) /6+1;  但因为又加了一步所以要加一。可以直接跳到的则期望是一样的。

 #include <cstdio>
#include <cstring>
const int Maxn=;
int vis[Maxn],n,m,u,v;
double F[Maxn];
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
if (n== && m==) break;
memset(vis,-,sizeof(vis));
for (int i=;i<=m;i++) scanf("%d%d",&u,&v),vis[u]=v;
memset(F,,sizeof(F));
for (int i=n-;i>=;i--)
if (vis[i]==-)
{
for (int j=;j<=;j++) F[i]+=F[i+j]/6.0;
F[i]=F[i]+;
} else
F[i]=F[vis[i]];
printf("%.4lf\n",F[]);
}
return ;
}

C++

HDU 4089 至今还不是很清楚怎么退的。。

 #include <cstdio>
const int Maxn=;
const double eps=1e-;
double F[Maxn][Maxn],p1,p2,p3,p4,x[Maxn],z[Maxn];
int n,m,k;
int main()
{
while (scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
{
if (p4<eps) {puts("0.00000");continue;}
double p21=p2/(-p1),p31=p3/(-p1),p41=p4/(-p1);
F[][]=p4/(-p2-p1);
for (int i=;i<=n;i++)
{
x[]=p21; z[]=p41;
for (int j=;j<=i;j++)
{
x[j]=x[j-]*p21;
z[j]=p31*F[i-][j-]+p21*z[j-];
if (j<=k) z[j]+=p41;
}
F[i][i]=z[i]/(-x[i]);
for (int j=;j<i;j++) F[i][j]=x[j]*F[i][i]+z[j];
}
printf("%.5lf\n",F[n][m]);
}
return ;
}

C++

POJ 2096 一直末状态推终状态。

 #include<cstdio>
const int Maxn=;
double F[Maxn][Maxn];
int n,s;
int main()
{
while(scanf("%d%d",&n,&s)!=EOF)
{
F[n][s]=;
for(int i=n;i>=;i--)
for(int j=s;j>=;j--)
{
if(i==n && j==s) continue;
F[i][j]=(i*(s-j)*F[i][j+]+(n-i)*j*F[i+][j]+(n-i)*(s-j)*F[i+][j+]+n*s)/(n*s-i*j);
}
printf("%.4f\n",F[][]);
}
return ;
}

C++

POJ 3744 矩阵乘法加速线性表达式递推。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int Maxn=;
struct Matrix {double a[][]; int x,y;};
int n,a[Maxn];
double p,Ans;
inline Matrix operator * (Matrix A,Matrix B)
{
Matrix C; C.x=A.x,C.y=B.y;
memset(C.a,,sizeof(C.a));
for (int i=;i<=A.x;i++)
for (int j=;j<=A.y;j++)
for (int k=;k<=B.y;k++)
C.a[i][j]+=A.a[i][k]*B.a[k][j];
return C;
}
inline Matrix Pow(Matrix x,int y)
{ Matrix Ret; Ret.x=,Ret.y=;
memset(Ret.a,,sizeof(Ret.a));
Ret.a[][]=Ret.a[][]=; while (true)
{
if (y&) Ret=Ret*x;
x=x*x; y>>=;
if (y==) break;
}
return Ret;
} double Get(int t)
{
if (t<=) return ;
if (t==) return ;
if (t==) return p;
t-=;
Matrix M;
M.x=M.y=;
M.a[][]=p;
M.a[][]=-p;
M.a[][]=;
M.a[][]=;
M=Pow(M,t);
return M.a[][]*p+M.a[][];
} int main()
{
while (scanf("%d%lf",&n,&p)!=EOF)
{
for (int i=;i<=n;i++) scanf("%d",&a[i]);
sort(a+,a+n+);
Ans=;
for (int i=;i<=n;i++)
Ans=Ans*Get(a[i]-a[i-])*(1.0-p);
printf("%.7lf\n",Ans);
}
return ;
}

C++

POJ 3071 直接DP即可

 #include <cstdio>
#include <cstring>
double F[][],p[][];
int n,Ans;
int main()
{
while (scanf("%d",&n)!=EOF)
{
if (n==-) break;
memset(F,,sizeof(F));
for (int i=;i<=(<<n);i++)
for (int j=;j<=(<<n);j++) scanf("%lf",&p[i][j]);
for (int i=;i<=(<<n);i++) F[][i]=1.0;
for (int i=;i<=n;i++)
for (int j=;j<=(<<n);j++)
for (int k=;k<=(<<n);k++)
if (((j-)>>(i-)^)==((k-)>>i-))
F[i][j]+=F[i-][j]*F[i-][k]*p[j][k];
double Ret=;
for (int i=;i<=(<<n);i++)
if (F[n][i]>Ret) Ans=i,Ret=F[n][i];
printf("%d\n",Ans);
}
return ;
}

C++

期望DP的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. Android中插件开发篇之----应用换肤原理解析

    一.前言 今天又到周末了,感觉时间过的很快呀.又要写blog了.那么今天就来看看应用的换肤原理解析.在之前的一篇博客中我说道了Android中的插件开发篇的基础:类加载器的相关知识.没看过的同学可以转 ...

  2. .Net最佳实践3:使用性能计数器收集性能数据

    本文值得阅读吗? 本文讨论我们如何使用性能计数器从应用程序收集数据.我们将先了解的基本知识,然后我们将看到一个简单的示例,我们将从中收集一些性能数据. 介绍: - 我的应用程序的性能是最好的,像火箭 ...

  3. QT笔记之VS开发程序遇到的问题

    转载:http://www.cnblogs.com/li-peng/p/3644812.html 转载:http://www.cnblogs.com/csuftzzk/p/VS_Qt_Experien ...

  4. [问题2015S04] 复旦高等代数 II(14级)每周一题(第五教学周)

    [问题2015S04] 设 \(A\) 为 \(n\) 阶方阵, \(C\) 为 \(k\times n\) 矩阵, 且对任意的 \(\lambda\in\mathbb{C}\), \(\begin{ ...

  5. 安装DotNetCore.1.0.0-VS2015Tools.Preview2失败解决方案

    1.把安装文件放入非系统盘 2.命令行带参数运行: DotNetCore.1.0.0-VS2015Tools.Preview2.0.1.exe SKIP_VSU_CHECK=1 或 DotNetCor ...

  6. centos 服务开机启动设置

    建立服务文件以nginx 为例 vim /lib/systemd/system/nginx.service 在nginx.service 中插入一下内容 [Unit] Description=ngin ...

  7. Analyzer报表结果行

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  8. Linux进程基础

    Linux进程基础   作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 计算机实际上可以做的事情实质上非常简单,比如计算两个数的和 ...

  9. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  10. CSS 3 3D转换

    绘制3D环境 父元素设置了 preserve-3d  子元素就可以以父元素作为平面进行3d转换 transform-style: preserve-3d; 设置视点 :表示透视效果  值越小 透视效果 ...