Codeforces 687B. Remainders Game[剩余]
1 second
256 megabytes
standard input
standard output
Today Pari and Arya are playing a game called Remainders.
Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value
. There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya
if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value
for any positive integer x?
Note, that
means the remainder of x after dividing it by y.
The first line of the input contains two integers n and k (1 ≤ n, k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.
4 5
2 3 5 12
Yes
2 7
2 3
No
In the first sample, Arya can understand
because 5 is one of the ancient numbers.
In the second sample, Arya can't be sure what
is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
题意:有数字x和k,x未知;知道x mod ci的结果,问x mod k是否唯一
官方题解:
Hint
Assume the answer of a test is No. There must exist a pair of integers x1 and x2 such that both of them have the same remainders after dividing by any ci, but they differ in remainders after dividing by k. Find more facts about x1 and x2!
Solution
Consider the x1 and x2 from the hint part. We have x1 - x2 ≡ 0 (
) for each 1 ≤ i ≤ n.
So:

We also have
(
). As a result:

We've found a necessary condition. And I have to tell you it's also sufficient!
Assume
, we are going to prove there exists x1, x2 such that x1 - x2 ≡ 0 (
) (for each 1 ≤ i ≤ n), and
(
).
A possible solution is x1 = lcm(c1, c2, ..., cn) and x2 = 2 × lcm(c1, c2, ..., cn), so the sufficiency is also proved.
So you have to check if lcm(c1, c2, ..., cn) is divisible by k, which could be done using prime factorization of k and ci values.
For each integer x smaller than MAXC, find it's greatest prime divisor gpdx using sieve of Eratosthenes in
.
Then using gpd array, you can write the value of each coin as p1q1p2q2...pmqm where pi is a prime integer and 1 ≤ qi holds. This could be done in
by moving from ci to
and adding gpdci to the answer. And you can factorize k by the same way. Now for every prime p that
, see if there exists any coin i that the power of p in the factorization of ci is not smaller than the power of p in the factorization of k.
Complexity is
.
题解前一部分比较好,后面还用筛法太扯了,质因数分解不用判质数
假设有两个x1和x2,如果x mod k不唯一的话则x1和x2满足:
x1-x2≡0(mod ci)----->lcm(c1,c2,..,cn)|x1-x2
x1-x2!≡0(mod k)
那么:
最小的x1-x2就是lcm
代入得lcm!≡0(mod k) 也就是k!|lcm
质因数分解k判断每个质因子是否是某个ci 的约数,如果全是则可以整除,解唯一,一定可以猜出
//
// main.cpp
// cf687b
//
// Created by Candy on 9/20/16.
// Copyright © 2016 Candy. All rights reserved.
// #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,k,c[N];
bool check(int a){
for(int i=;i<=n;i++) if(c[i]%a==) return ;
return ;
}
int main(int argc, const char * argv[]) {
n=read();k=read();
for(int i=;i<=n;i++) c[i]=read();
for(int i=;i<=k;i++){
int a=;
while(k%i==) a*=i,k/=i;
if(a!=&&!check(a)){printf("No");return ;}
}
printf("Yes");
return ;
}
Codeforces 687B. Remainders Game[剩余]的更多相关文章
- codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...
- CodeForces 687B Remainders Game
数论. 如果$x$不唯一,假设存在两个解,较大的为${x_1}$,较小的为${x_2}$. 那么, $\left\{ {\begin{array}{*{20}{c}}{{x_1}\% {c_i} = ...
- CodeForces 687B Remainders Game(数学,最小公倍数)
题意:给定 n 个数,一个数 k,然后你知道一个数 x 取模这个 n 个的是几,最后问你取模 k,是几. 析:首先题意就看了好久,其实并不难,我们只要能从 n 个数的最小公倍数是 k的倍数即可,想想为 ...
- 【16.56%】【codeforces 687B】Remainders Game
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理
题目链接: 题目 D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes 问题描述 To ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 数学
D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...
- Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学
E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...
- Codeforces Round #360 (Div. 2) D. Remainders Game
D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- codeforces 688D D. Remainders Game(中国剩余定理)
题目链接: D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input stan ...
随机推荐
- JavaScript学习笔记-用于模式匹配的String方法
用于模式匹配的String方法: String支持4种使用正则表达式的方法: seach()用于检索,参数是一个正则表达式,返回第一个与之匹配的子串的位置,找不到则返回-1,如 ...
- cordova 添加闪屏效果
为项目添加SplashScreen插件 在Cordova项目目录运行: cordova plugin add apache.cordova.splashscreen 这个命令从插件git库下载插件代码 ...
- Linux新手扫盲
一. Linux特点 1.免费/开源: 2.支持多线程/多用户: 3.安全性好: 4.对内存和文件管理优越. Linux最小只需4M ——> 嵌入式开发 二. 文件目录 Linux系统所有软硬件 ...
- Servlet基础(一) Servlet简介 关键API介绍及结合源码讲解
Servlet基础(一) Servlet基础和关键的API介绍 Servlet简介 Java Servlet是和平台无关的服务器端组件,它运行在Servlet容器中. Servlet容器负责Servl ...
- Android优秀学习资料(高手博客
任玉刚, 博客 : http://blog.csdn.net/singwhatiwanna, github : https://github.com/singwhatiwanna Trinea, 博客 ...
- Android 字符乱码问题的处理
<Android 网络HTML查看器>一文中,运行代码实践一下 发现html源代码中出现了乱码,原因很明显:charset="gb2312" android默认的字符集 ...
- c中的指针
一. 指针前奏 1. 指针的重要性 指针是C语言中非常重要的数据类型,如果你说C语言中除了指针,其他你都学得很好,那你干脆说没学过C语言. 2. 小需求 l void change(int n)函数 ...
- MvcPager 概述 MvcPager 分页示例 — 标准Ajax分页 对SEO进行优化的ajax分页 (支持asp.net mvc)
该示例演示如何使用MvcPager最基本的Ajax分页模式. 使用AjaxHelper的Pager扩展方法来实现Ajax分页,使用Ajax分页模式时,必须至少指定MvcAjaxOptions的Upda ...
- PHP isset() 检测变量是否设置
isset() 用于检测变量是否设置. isset() PHP isset() 用于检测一个或多个变量是否设置,如果被检测的变量存在则返回 TRUE,否则返回 FALSE. 语法: 1 bool is ...
- php示例代码之使用MySQLi接口
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...