B. Remainders Game
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya  if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value  for any positive integer x?

Note, that  means the remainder of x after dividing it by y.

Input

The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

Output

Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

Examples
input
4 5
2 3 5 12
output
Yes
input
2 7
2 3
output
No
Note

In the first sample, Arya can understand  because 5 is one of the ancient numbers.

In the second sample, Arya can't be sure what  is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.


题意:有数字x和k,x未知;知道x mod ci的结果,问x mod k是否唯一


官方题解:

Hint

Assume the answer of a test is No. There must exist a pair of integers x1 and x2 such that both of them have the same remainders after dividing by any ci, but they differ in remainders after dividing by k. Find more facts about x1 and x2!

Solution

Consider the x1 and x2 from the hint part. We have x1 - x2 ≡ 0 () for each 1 ≤ i ≤ n.

So:

We also have  (). As a result:

We've found a necessary condition. And I have to tell you it's also sufficient!

Assume , we are going to prove there exists x1, x2 such that x1 - x2 ≡ 0 () (for each 1 ≤ i ≤ n), and  ().

A possible solution is x1 = lcm(c1, c2, ..., cn) and x2 = 2 × lcm(c1, c2, ..., cn), so the sufficiency is also proved.

So you have to check if lcm(c1, c2, ..., cn) is divisible by k, which could be done using prime factorization of k and ci values.

For each integer x smaller than MAXC, find it's greatest prime divisor gpdx using sieve of Eratosthenes in .

Then using gpd array, you can write the value of each coin as p1q1p2q2...pmqm where pi is a prime integer and 1 ≤ qi holds. This could be done in  by moving from ci to  and adding gpdci to the answer. And you can factorize k by the same way. Now for every prime p that , see if there exists any coin i that the power of p in the factorization of ci is not smaller than the power of p in the factorization of k.

Complexity is .


题解前一部分比较好,后面还用筛法太扯了,质因数分解不用判质数

假设有两个x1和x2,如果x mod k不唯一的话则x1和x2满足:

x1-x2≡0(mod ci)----->lcm(c1,c2,..,cn)|x1-x2

x1-x2!≡0(mod k)

那么:

最小的x1-x2就是lcm

代入得lcm!≡0(mod k) 也就是k!|lcm

质因数分解k判断每个质因子是否是某个ci 的约数,如果全是则可以整除,解唯一,一定可以猜出

//
// main.cpp
// cf687b
//
// Created by Candy on 9/20/16.
// Copyright © 2016 Candy. All rights reserved.
// #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,k,c[N];
bool check(int a){
for(int i=;i<=n;i++) if(c[i]%a==) return ;
return ;
}
int main(int argc, const char * argv[]) {
n=read();k=read();
for(int i=;i<=n;i++) c[i]=read();
for(int i=;i<=k;i++){
int a=;
while(k%i==) a*=i,k/=i;
if(a!=&&!check(a)){printf("No");return ;}
}
printf("Yes");
return ;
}

Codeforces 687B. Remainders Game[剩余]的更多相关文章

  1. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  2. CodeForces 687B Remainders Game

    数论. 如果$x$不唯一,假设存在两个解,较大的为${x_1}$,较小的为${x_2}$. 那么, $\left\{ {\begin{array}{*{20}{c}}{{x_1}\% {c_i} = ...

  3. CodeForces 687B Remainders Game(数学,最小公倍数)

    题意:给定 n 个数,一个数 k,然后你知道一个数 x 取模这个 n 个的是几,最后问你取模 k,是几. 析:首先题意就看了好久,其实并不难,我们只要能从 n 个数的最小公倍数是 k的倍数即可,想想为 ...

  4. 【16.56%】【codeforces 687B】Remainders Game

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  5. Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理

    题目链接: 题目 D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes 问题描述 To ...

  6. Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...

  7. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  8. Codeforces Round #360 (Div. 2) D. Remainders Game

    D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  9. codeforces 688D D. Remainders Game(中国剩余定理)

    题目链接: D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input stan ...

随机推荐

  1. CSS常用标签

    CSS常用标签 一 CSS文字属性 color : #999999; /*文字颜色*/ font-family : 宋体,sans-serif; /*文字字体*/ font-size : 9pt; / ...

  2. Jquery在线引用地址

    Jquery在线引用地址: 1. 很多网站都是使用这种方式引入,客户的浏览器可能已经缓存过了 jquery.可以直接调用本地的,速度更快… 2. Google code 使用了 cdn 技术在很多地方 ...

  3. 之三:CAAnimationGroup - 动画组

    动画组顾名思义就是将多个不同的动画效果组合起来同时作用于一个层上 代码演示: // 创建基本路径 CGMutablePathRef path = CGPathCreateMutable(); // 设 ...

  4. iOS关于CAShapeLayer与UIBezierPath的知识内容

    使用CAShapeLayer与UIBezierPath可以实现不在view的drawRect方法中就画出一些想要的图形 . 1:UIBezierPath: UIBezierPath是在 UIKit 中 ...

  5. 初学svn对版本进行控制 用post- commit钩子实现代码同步到web目录

    这里只是一个记录,原文摘抄svn利用钩子实现代码同步到web目录 思路: 找 到SVN Server中的仓库(Repositories)文件夹的位置,在相应的项目文件夹中找到hooks文件夹.在该文件 ...

  6. 深入理解Angular中的$Apply()以及$Digest()

    $apply()和$digest()在AngularJS中是两个核心概念,但是有时候它们又让人困惑.而为了了解AngularJS的工作方式,首先需要了解$apply()和$digest()是如何工作的 ...

  7. 用CSS3实现背景的固定

    今天放假了,正好最近养成了没事泡泡博客园的习惯,自己也有了博客..不得不吐槽一下博客园为什么页面这么古朴,,带的几个模版也没啥意思,反正不符合我口味,幸亏后台提供了编辑CSS的功能,于是我就搬来现有的 ...

  8. Windows Server 2012 Recycle Bin corrupted

    在Windows Server 2012 上遇到了“The Recycle Bin On E:\ is corrupted. Do you want to empty the Recycle Bin ...

  9. MYSQL 数据库导入导出命令

    MySQL命令行导出数据库 1,进入MySQL目录下的bin文件夹:cd MySQL中到bin文件夹的目录 如我输入的命令行:cd C:\Program Files\MySQL\MySQL Serve ...

  10. mysql字符编码集(乱码)问题解决

    1.创建数据库 CREATE DATABASE `test` CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'; 创建表 CREATE TABLE tp_w ...