基于Open vSwitch搭建虚拟路由器
As part of my work in OpenDaylight, we are looking at creating a router using Open vSwitch... Why? Well OpenStack requires some limited L3 capabilities and we think that we can handle those in a distributed router.
Test Topology
My test topology looks like this:
We have a host in an external network 172.16.1.0/24
, one host in an internal network 10.10.10.0/24
and two hosts in another internal network 10.10.20.0/24
.
As such, The hosts in the 10.x.x.x
range should be able to speak to each other, but should not be able to speak to external hosts.
The host 10.10.10.2
has a floating IP of 172.16.1.10
and should be reachable on this address from the external 172.16.1.0/24
network. To do this, we'll use DNAT for traffic from 172.16.1.2 -> 172.16.1.10
and SNAT for traffic back from10.10.10.2 -> 172.16.1.2
If you'd like to recreate this topology you can checkout the OpenDaylight OVSDB project source on GitHub and:
vagrant up mininet
vagrant ssh mininet
cd /vagrant/resources/mininet
sudo mn --custom topo.py --topo l3
The Pipeline
Our router is implemented using the following pipeline:
Table 0 - Classifier
In this table we work out what traffic is interesting for us before pushing it further along the pipeline
Table 100 - ACL
While we don't use this table today, the idea would be to filter traffic in this table (or series of tables) and to then resubmit to the classifier once we have scrubbed them.
Table 105 - ARP Responder
In this table we use some OVS-Jitsu to take an incoming ARP Request and turn it in to an ARP reply
Table 5 - L3 Rewrite
In this table, we make any L3 modifications we need to before a packet is routed
Table 10 - L3 Routing
The L3 routing table is where the routing magic happens. Here we modify the Source MAC address, Decrement the TTL and push to the L2 tables for forwarding
Table 15 - L3 Forwarding
In the L3 forwarding table we resolve a destination IP address to the correct MAC address for L2 forwarding.
Table 20 - L2 Rewrites
While we aren't using this table in this example, typically we would push/pop any L2 encapsulations here like a VLAN tag or a VXLAN/GRE Tunnel ID.
Table 25 - L2 Forwarding
In this table we do our L2 lookup and forward out the correct port. We also handle L2 BUM traffic here using OpenFlow Groups - no VLANs!
The Flows
To program the flows, paste the following in to mininet:
## Set Bridge to use OpenFlow 1.3
sh ovs-vsctl set Bridge s1 "protocols=OpenFlow13" ## Create Groups
sh ovs-ofctl add-group -OOpenFlow13 s1 group_id=,type=all,bucket=output:
sh ovs-ofctl add-group -OOpenFlow13 s1 group_id=,type=all,bucket=output:,
sh ovs-ofctl add-group -OOpenFlow13 s1 group_id=,type=all,bucket=output: ## Table - Classifier
# Send ARP to ARP Responder
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=0, priority=1000, dl_type=0x0806, actions=goto_table=105"
# Send L3 traffic to L3 Rewrite Table
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=0, priority=100, dl_dst=00:00:5E:00:02:01, action=goto_table=5"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=0, priority=100, dl_dst=00:00:5E:00:02:02, action=goto_table=5"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=0, priority=100, dl_dst=00:00:5E:00:02:03, action=goto_table=5"
# Send L3 to L2 Rewrite Table
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=0, priority=0, action=goto_table=20" ## Table - L3 Rewrites
# Exclude connected subnets
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=5, priority=65535, dl_type=0x0800, nw_dst=10.10.10.0/24 actions=goto_table=10"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=5, priority=65535, dl_type=0x0800, nw_dst=10.10.20.0/24 actions=goto_table=10"
# DNAT
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=5, priority=100, dl_type=0x0800, nw_dst=172.16.1.10 actions=mod_nw_dst=10.10.10.2, goto_table=10"
# SNAT
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=5, priority=100, dl_type=0x0800, nw_src=10.10.10.2, actions=mod_nw_src=172.16.1.10, goto_table=10"
# If no rewrite needed, continue to table
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=5, priority=0, actions=goto_table=10" ## Table - IPv4 Routing
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=10, dl_type=0x0800, nw_dst=10.10.10.0/24, actions=mod_dl_src=00:00:5E:00:02:01, dec_ttl, goto_table=15"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=10, dl_type=0x0800, nw_dst=10.10.20.0/24, actions=mod_dl_src=00:00:5E:00:02:02, dec_ttl, goto_table=15"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=10, dl_type=0x0800, nw_dst=172.16.1.0/24, actions=mod_dl_src=00:00:5E:00:02:03, dec_ttl, goto_table=15"
# Explicit drop if cannot route
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=10, priority=0, actions=output:0" ## Table - L3 Forwarding
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=15, dl_type=0x0800, nw_dst=10.10.10.2, actions=mod_dl_dst:00:00:00:00:00:01, goto_table=20"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=15, dl_type=0x0800, nw_dst=10.10.20.2, actions=mod_dl_dst:00:00:00:00:00:02, goto_table=20"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=15, dl_type=0x0800, nw_dst=10.10.20.4, actions=mod_dl_dst:00:00:00:00:00:04, goto_table=20"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=15, dl_type=0x0800, nw_dst=172.16.1.2, actions=mod_dl_dst:00:00:00:00:00:03, goto_table=20"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=15, priority=0, actions=goto_table=20" ## Table - L2 Rewrite
# Go to next table
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=20, priority=0, actions=goto_table=25" ## Table - L2 Forwarding
# Use groups for BUM traffic
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, in_port=1, dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=group=1"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, in_port=2, dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=group=2"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, in_port=3, dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=group=3"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, in_port=4, dl_dst=01:00:00:00:00:00/01:00:00:00:00:00, actions=group=2"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, dl_dst=00:00:00:00:00:01,actions=output=1"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, dl_dst=00:00:00:00:00:02,actions=output=2"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, dl_dst=00:00:00:00:00:03,actions=output=3"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=25, dl_dst=00:00:00:00:00:04,actions=output=4" ## Table - ARP Responder
# Respond to ARP for Router Addresses
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=105, dl_type=0x0806, nw_dst=10.10.10.1, actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[], mod_dl_src:00:00:5E:00:02:01, load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[], move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[], load:0x00005e000201->NXM_NX_ARP_SHA[], load:0x0a0a0a01->NXM_OF_ARP_SPA[], in_port"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=105, dl_type=0x0806, nw_dst=10.10.20.1, actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[], mod_dl_src:00:00:5E:00:02:02, load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[], move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[], load:0x00005e000202->NXM_NX_ARP_SHA[], load:0xa0a1401->NXM_OF_ARP_SPA[], in_port"
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=105, dl_type=0x0806, nw_dst=172.16.1.1, actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[], mod_dl_src:00:00:5E:00:02:03, load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[], move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[], load:0x00005e000203->NXM_NX_ARP_SHA[], load:0xac100101->NXM_OF_ARP_SPA[], in_port"
# Proxy ARP for all floating IPs go below
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=105, dl_type=0x0806, nw_dst=172.16.1.10, actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[], mod_dl_src:00:00:5E:00:02:03, load:0x2->NXM_OF_ARP_OP[], move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[], move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[], load:0x00005e000203->NXM_NX_ARP_SHA[], load:0xac10010a->NXM_OF_ARP_SPA[], in_port"
# if we made it here, the arp packet is to be handled as any other regular L2 packet
sh ovs-ofctl add-flow -OOpenFlow13 s1 "table=105, priority=0, action=resubmit(,20)"
If you'd like to paste these in without comments, you can use this Gist
Testing
We can run a pingall to test this out:
mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3 h4
h2 -> h1 X h4
h3 -> X X X
h4 -> h1 h2 X
*** Results: % dropped (/ received)
hosts 1,2 and 4 can speak to each other. Everything initiated by h3 is dropped (as expected) but h1 can speak to h3 (thanks to NAT). We can test our DNAT and Proxy ARP for Floating IP's using this command:
mininet> h3 ping 172.16.1.10
PING 172.16.1.10 (172.16.1.10) () bytes of data.
bytes from 172.16.1.10: icmp_seq= ttl= time=1.30 ms
bytes from 172.16.1.10: icmp_seq= ttl= time=0.043 ms
bytes from 172.16.1.10: icmp_seq= ttl= time=0.045 ms
bytes from 172.16.1.10: icmp_seq= ttl= time=0.050 ms
^C
--- 172.16.1.10 ping statistics ---
packets transmitted, received, % packet loss, time 2999ms
rtt min/avg/max/mdev = 0.043/0.360/1.305/0.545 ms
Cool! It works!
Conclusion
So far we've implemented the nuts and bolts of routing, but we are missing one crucial piece - ICMP handling. Without this useful things like Path MTU Discovery won't work and neither will diagnostics tools like Ping and Traceroute. I think we can do this using a Open vSwitch but first we'll need to add some new NXM fields to ICMP Data and ICMP Checksum and to also make the existing OXM's writable through set_field
. I'm going to start talking to the OVS community about this to see if it's possible so watch this space!
@dave_tucker
Helpful Links and Further Reading
ovs-ofctl Man Page Neutron ARP Responder Write Up Address Resolution Protocol OpenFlow 1.3.1 Spec
本文转自http://dtucker.co.uk/hack/building-a-router-with-openvswitch.html
基于Open vSwitch搭建虚拟路由器的更多相关文章
- K8S学习心得 == 安装虚拟路由器RouterOS
使用RouterOS, 搭建虚拟路由器,并且配置多个网关互通.配置步骤如下. 基础配置 1. RouterOS 服务器,设置如下 2. VM 不同网段的设置 == 192. ...
- OVS-----CentOS7上搭建基于Open vSwitch的VxLAN隧道实验
一.关于VXLAN VXLAN 是 Virtual eXtensible LANs 的缩写,它是对 VLAN 的一个扩展,是非常新的一个 tunnel 技术,在Open vSwitch中应用也非常多. ...
- 【Nginx】如何基于主从模式搭建Nginx+Keepalived双机热备环境?这是最全的一篇了!!
写在前面 最近出版了<海量数据处理与大数据技术实战>,详情可以关注 冰河技术 微信公众号,查看<我的<海量数据处理与大数据技术实战>出版啦!>一文. 也有不少小伙伴 ...
- 基于Open vSwitch的OpenFlow实践
Open vSwitch(下面简称为 OVS)是由 Nicira Networks 主导的,运行在虚拟化平台(例如 KVM,Xen)上的虚拟交换机.在虚拟化平台上,OVS 可以为动态变化的端点提供 2 ...
- 基于VMware Workstation搭建开发服务器
基于VMware Workstation搭建开发服务器 文章为本人原创,转载请联系作者并注明出处.晓松 源URL: https://www.jianshu.com/p/e62ab7de0124 我 ...
- 基于 Azure IaaS 搭建企业官网的规划和实践
本课程主要介绍了基于 Azure IaaS 搭建企业官网的案例分析和实践,实践讲解如何使用 Azure 门户创建虚拟机, 创建虚拟网络, 创建存储账户等. 具体包括项目背景介绍, 项目架构, 准备和实 ...
- 基于S7-PLCSIM Advanced搭建S7通信仿真环境
写在前面: 之前有专门讲过一期如何搭建西门子PLC的S7通信仿真环境,感兴趣的可以点击查看:戳↓ 1.基于TIA搭建西门子PLC仿真环境及通信方案-联合出品 2.手把手教你搭建西门子PLC仿真环境 那 ...
- VRRP(Virtual Router Redundancy Protocol) 虚拟路由器冗余协议简介
因工作中使用Keepalived配置Nginx代理和MySQL代理的高可用,而Keepalived是VRRP协议在linux上的软件实现.因此了解了下VRRP的基础. 1. VRRP技术的引入 随着I ...
- VRRP虚拟路由器冗余协议
VRRP(VirtualRouterRedundancyProtocol,虚拟路由冗余协议)是一种容错协议.通常,一个网络内的所有主机都设置一条缺省路由,这样,主机发出的目的地址不在本网段的报文将被通 ...
随机推荐
- git reset soft,hard,mixed之区别深解
GIT reset命令,似乎让人很迷惑,以至于误解,误用.但是事实上不应该如此难以理解,只要你理解到这个命令究竟在干什么. 首先我们来看几个术语 HEAD 这是当前分支版本顶端的别名,也就是在当前分支 ...
- Ubuntu配置pyethapp
1. 安装系统依赖 apt-get install build-essential automake pkg-config libtool libffi-dev libgmp-dev 2. Clone ...
- Android Studio插件推荐(PreIOC,GsonFormat)
好的插件能加快项目的开发速度,尤其是一些针对重复性的代码的插件,所以在这里向大家推荐2款不错的插件,如果以后发现新的好的插件,还会继续推荐,同时欢迎大家推荐 GsonFormat GsonFormat ...
- java 解决汉诺塔问题
//汉诺塔问题//HanYang 2016/10/15 import java.util.Scanner; //输出public class Hanuota { public static void ...
- hadoop运行原理之shuffle
hadoop的核心思想是MapReduce,但shuffle又是MapReduce的核心.shuffle的主要工作是从Map结束到Reduce开始之间的过程.首先看下这张图,就能了解shuffle所处 ...
- 1410. Crack
http://acm.timus.ru/problem.aspx?space=1&num=1410 题目倒是不难,水题DP 就是题意理解起来有点困难,意思就是给你一段话,提取里面的单词 单词有 ...
- 设计模式六大原则(5)—迪米特法则
定义: 一个对象应该对其它的对象保持最少的了解.迪米特法则又称为最少知识法则,英文全称为Least Knowledge Principle ,简称为LKP. 个人理解: 迪米特法则主要目的是类间解耦, ...
- [深入Python]Python的私有变量
Python没有真正的私有变量.内部实现上,是将私有变量进程了转化,规则是:_<类名><私有变量> 下面的小技巧可以获取私有变量: class Test(object): de ...
- 获取su后执行的脚本的返回值
错误的方式: # su - testuser -c "/tmp/test.sh; echo $?"Sun Microsystems Inc. SunOS 5.10 G ...
- (转)PhoneGap工作原理及需改进的地方
原文:http://mobile.51cto.com/web-330900.htm PhoneGap工作原理及需改进的地方 2012-04-18 16:42 佚名 网络整理 字号:T | T 目前开发 ...