1502: [NOI2005]月下柠檬树

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit:
1017  Solved: 562
[Submit][Status][Discuss]

Description

Input

文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。输入的所有实数的小数点后可能包含1至10位有效数字。

Output

输出1个实数,表示树影的面积。四舍五入保留两位小数。

Sample Input

2 0.7853981633
10.0 10.00
10.00
4.00 5.00

Sample Output

171.97

HINT

1≤n≤500,0.3

Source

Solution

一道计算集合比较蛋疼的题目

当时的正解应该是分类讨论+特判很多东西再直接求面积,但是发现这题非常适合辛普森积分所以就直接上了

那么先是辛普森积分的公式:

对于某些不易计算曲线的一种近似方法,能自动调整精度,但误差较大(比较平滑的曲线非常适合)

具体的计算流程就是,计算[l,mid]以及[mid,r]与直接计算[l,r]的结果相比较,如果近似则返回[l,r]即可,否则可以分别递归细化

这种做法非常好卡,一种最简单的卡法:这样一开始就会直接返回,然而递归下去才能求的更精确的值

---------------------------------------------------分割线---------------------------------------------------

首先我们考虑这题的投影,圆投下来,和之前完全一样,所以投影本质是一些圆和他们的公切线组成的图形求面积

发现其实是轴对称图形,所以可以考虑直接利用扫描线+自适应Simpson来做

扫描线被覆盖部分的长度的函数F(x)在这个图形的区间中是连续的,因此不必考虑将整个图形拆成若干个一坨一坨的图形再求积分,少了不少细节。

无论扫描线在何处,它被覆盖的部分也是永远是连续的,因此可以暴力找每个圆是否和扫描线有交,每条公切线段是否和扫描线有交,然后取扫描线被覆盖长度的最大值即可

那么至于求公切线,比较简单,给出详细方法:

首先我们得到:$l=C_{i+1}.O.x-C_{i+1}.O.x$
那么我们可以算出:$sin\alpha = (R-r)/l$,$cos\alpha = \sqrt{1-sin^2\alpha}$(考虑从$C_{i+1}.O$向$R$做垂线)
那么可以算出切点:

$C_{i}.A=(C_{i}.O.x+R*sin\alpha,R*cos\alpha)$
$C_{i+1}.A=(C_{i+1}.O.x+r*sin\alpha,r*cos\alpha)$

这题的细节比较麻烦,注意特判圆被另一个圆直接覆盖的情况

---------------------------------------------------分割线---------------------------------------------------

这道题还需要注意一下精度问题

个人测试:eps=1e-5是可行最优

eps=1e-12   --> 5s

eps=1e-8     --> 1s

eps=1e-5     --> 0.5s

eps=1e-3/-4 --> Wrong_Answer

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAXN 1010
double alpha;
int N,num;
#define INF 1e12
#define eps 1e-5
struct Point
{
double x,y;
Point (double X=,double Y=) {x=X; y=Y;}
};
struct Circle
{
double r;
Point c;
Circle(Point C=(Point){,},double R=) {c=C; r=R;}
}C[MAXN];
struct Line
{
Point s,t;
double k,b;
Line(Point S=(Point){,},Point T=(Point){,})
{
s=S,t=T;
if (s.x>t.x) swap(s,t);
k=(s.y-t.y)/(s.x-t.x);
b=s.y-k*s.x;
}
double f(double x) {return k*x+b;}
}l[MAXN];
int dcmp(double x) {if (fabs(x)<eps) return ; return x<? -:;}
double F(double x)
{
double re=;
for (int i=; i<=N; i++) //枚举圆是否与扫描线有交
{
double d=fabs(x-C[i].c.x);
if (dcmp(d-C[i].r)>) continue;
double len=*sqrt(C[i].r*C[i].r-d*d);
re=max(re,len);
}
for (int i=; i<=num; i++) //枚举公切线
if (x>=l[i].s.x && x<=l[i].t.x) re=max(re,*l[i].f(x));
return re;
} //利用扫描线去判断
double Calc(double l,double r) {double mid=(l+r)/; return (F(l)+F(r)+F(mid)*)*(r-l)/;}
double Simpson(double l,double r,double now)
{
double mid=(l+r)/;
double x=Calc(l,mid),y=Calc(mid,r);
if (!dcmp(now-x-y)) return now;
else return Simpson(l,mid,x)+Simpson(mid,r,y);
}
void Solve()
{
double L=INF,R=-INF;
for (int i=; i<=N+; i++)
L=min(L,C[i].c.x-C[i].r),R=max(R,C[i].c.x+C[i].r);
// printf("%lf\n%lf\n",L,R);
for (int i=; i<=N; i++)
{
double d=C[i+].c.x-C[i].c.x;
if (dcmp(d-fabs(C[i].r-C[i+].r))<) continue; //特判小圆被大圆覆盖的情况
double sina=(C[i].r-C[i+].r)/d,cosa=sqrt(-sina*sina);
l[++num]=(Line){(Point){C[i].c.x+C[i].r*sina,C[i].r*cosa},(Point){C[i+].c.x+C[i+].r*sina,C[i+].r*cosa}};
}
printf("%.2lf\n",Simpson(L,R,Calc(L,R)));
}
int main()
{
scanf("%d%lf",&N,&alpha);
double h,r;
for (int i=; i<=N+; i++)
scanf("%lf",&h),
C[i]=(Circle){((Point){(h/tan(alpha))+C[i-].c.x,}),};
for (int i=; i<=N; i++)
scanf("%lf",&r),C[i].r=r;
// for (int i=1; i<=N+1; i++)
// printf("%d %.2lf %.2lf\n",i,C[i].c.x,C[i].r);
Solve();
return ;
}

晚上颓这道‘模版题’简直不要太爽,来个人求一下我的心里阴影面积吧QAQ

【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分的更多相关文章

  1. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  2. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  3. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  4. bzoj 1502 月下柠檬树【Simpson积分】

    投影到地面之后,会发现圆形在平行光下面积和形状是不会变的,也就是所要求的图形是若干个圆和把相邻两个圆连起来的公切线所组成的. 公切线和圆间距瞎求一下就行,注意要去掉被完全覆盖的圆 然后simpson即 ...

  5. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  6. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  7. [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法

    关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...

  8. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  9. 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...

随机推荐

  1. zlog学习笔记(zc_profile)

    zc_profile.h #ifndef __zlog_profile_h #define __zlog_profile_h #define EMPTY() #define zc_assert(exp ...

  2. PAT 1029. 旧键盘(20)

    旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及实际被输入的文字,请你列出肯定坏掉的那些键. 输入格式: 输入在2行中分别给出应该输入的文字.以及实际 ...

  3. vs 2005 thread 无法调试

    两种办法:1.打开项目属性,在“Debug”一项里,把“Enable the Visual Studio hosting process”前的钩去掉.这个方法不是好办法.2.打开计算机管理,在服务里将 ...

  4. js 随笔

    setInterval:即使在方法中使用了stopInterval这个方法也要执行完才会停止自行重复执行,解决:使用return false来跳出方法. JS string和num:当一个是字符串数字 ...

  5. css一些记录

    比如右侧链接:更多   ,定义此span float:right ,但是 更多 要写在 短标题的左边  比如:<span>更多</span> <font>这是短标题 ...

  6. 如何让oracle的select强制走索引

    大多数情况下,oracle数据库内置的查询优化策略还是很成功的,但偶尔也有犯2的时候,即使有索引,也会做全表扫描,可以参考以下语句的写法,强制让select语句使用索引 CREATE OR REPLA ...

  7. hdu5444Elven Postman(主席树思想的应用)

    主席树这个概念应该不陌生吧!恩?不会, 戳这里. 主席树(函数式线段树)用的是函数思想,一个节点开数组用来保存自己的左右节点,这样节省许多不必要的空间,还可以保存许多历史状态.而这里我们用的是主席树的 ...

  8. iptables/Netfilter 学习

    开始学iptables,因为它是和路由器技术紧密结合在一起的. iptables的命令看起来眼花缭乱,随便找两个: iptables -A FORWARD -p tcp -s -d -j ACCEPT ...

  9. WPF ListView和ListBox等双击事件问题

    上两篇文章中说双击行获取不到当前数据对象问题, http://www.cnblogs.com/ligl/p/5636899.html http://www.cnblogs.com/ligl/p/562 ...

  10. Ace - Responsive Admin Template

    Ace简介: Ace 是一个轻量.功能丰富.HTML5.响应式.支持手机及平板电脑上浏览的管理后台模板,基于CSS框架Bootstrap制作,Bootstrap版本更新至 3.0,Ace – Resp ...