洛谷P3128 [USACO15DEC]最大流Max Flow [倍增LCA]
题目描述
Farmer John has installed a new system of pipes to transport milk between the
stalls in his barn (
), conveniently numbered
. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.
FJ is pumping milk between pairs of stalls (
). For the
th such pair, you are told two stalls
and
, endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the
paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from
to
, then it counts as being pumped through the endpoint stalls
and
, as well as through every stall along the path between them.
FJ给他的牛棚的N(2≤N≤50,000)个隔间之间安装了N-1根管道,隔间编号从1到N。所有隔间都被管道连通了。
FJ有K(1≤K≤100,000)条运输牛奶的路线,第i条路线从隔间si运输到隔间ti。一条运输路线会给它的两个端点处的隔间以及中间途径的所有隔间带来一个单位的运输压力,你需要计算压力最大的隔间的压力是多少。
输入输出格式
输入格式:
The first line of the input contains and
.
The next lines each contain two integers
and
(
) describing a pipe
between stalls and
.
The next lines each contain two integers
and
describing the endpoint
stalls of a path through which milk is being pumped.
输出格式:
An integer specifying the maximum amount of milk pumped through any stall in the
barn.
输入输出样例
5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4
9
倍增LCA+树上差分。
树结点的权值等于其子树所有节点的差分结果。
704ms,不知道用树剖求LCA会有多快
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v){
e[++mct].v=v;e[mct].nxt=hd[u];hd[u]=mct;return;
}
int n,k;
int dep[mxn];
int fa[mxn][];
int a[mxn];//差分
void DFS(int u,int f){
dep[u]=dep[f]+;
for(int i=;i<;i++)fa[u][i]=fa[fa[u][i-]][i-];
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==f)continue;
fa[v][]=u;
DFS(v,u);
}
return;
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=;i>=;i--){
if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
}
if(x==y)return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
}
return fa[x][];
}
int ans=-1e9;
int clc(int u,int f){
int res=a[u];
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==f)continue;
res+=clc(v,u);
}
ans=max(ans,res);
return res;
}
int main(){
n=read();k=read();
int i,j,x,y;
for(i=;i<n;i++){
x=read();y=read();
add_edge(x,y);
add_edge(y,x);
}
DFS(,);
for(i=;i<=k;i++){
x=read();y=read();
a[x]++;a[y]++;
int tmp=LCA(x,y);
a[tmp]--;
if(fa[tmp][])a[fa[tmp][]]--;
}
clc(,);
printf("%d\n",ans);
return ;
}
洛谷P3128 [USACO15DEC]最大流Max Flow [倍增LCA]的更多相关文章
- 洛谷P3128 [USACO15DEC]最大流Max Flow
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow [树链剖分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 洛谷 P3128 [ USACO15DEC ] 最大流Max Flow —— 树上差分
题目:https://www.luogu.org/problemnew/show/P3128 倍增求 lca 也写错了活该第一次惨WA. 代码如下: #include<iostream> ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)
题意 题目链接 Sol 树上差分模板题 发现自己傻傻的分不清边差分和点差分 边差分就是对边进行操作,我们在\(u, v\)除加上\(val\),同时在\(lca\)处减去\(2 * val\) 点差分 ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow
题目描述 \(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编号从\(1\)到\(N\).所有隔间都被管道连通了. \(FJ\)有\(K(1≤K≤10 ...
- 洛谷——P3128 [USACO15DEC]最大流Max Flow
https://www.luogu.org/problem/show?pid=3128 题目描述 Farmer John has installed a new system of pipes to ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow (树上差分)
###题目链接### 题目大意: 给你一棵树,k 次操作,每次操作中有 a b 两点,这两点路上的所有点都被标记一次.问你 k 次操作之后,整棵树上的点中被标记的最大次数是多少. 分析: 1.由于数 ...
- 题解——洛谷P3128 [USACO15DEC]最大流Max Flow
裸的树上差分 因为要求点权所以在点上差分即可 #include <cstdio> #include <algorithm> #include <cstring> u ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow-树上差分(点权/点覆盖)(模板题)
因为徐州现场赛的G是树上差分+组合数学,但是比赛的时候没有写出来(自闭),背锅. 会差分数组但是不会树上差分,然后就学了一下. 看了一些东西之后,对树上差分写一点个人的理解: 首先要知道在树上,两点之 ...
随机推荐
- [py]特殊函数+文件保护
1函数的好处 2函数的全局变量和局部变量 3,包和文件夹的区别 4,__name__ __file__ __doc__ #判断是否为主程序 if __name__=='__main__': pass ...
- Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- 使用 data-* 属性来嵌入自定义数据
1. HTML 实例 <ul> <li data-animal-type="bird">Owl</li> <li data-animal- ...
- 前端手札--meta标记篇
通用类: 声明编码 <meta charset='utf-8' /> SEO页面关键词 <meta name="keywords" content="y ...
- Web Worker 是什么鬼?
前言 前端工程师们一定有过这样的体验,当一个页面加载了大量的 js 文件时,用户界面可能会短暂地"冻结".这很好理解,因为 js 是单线程的语言.我们再走的极端点,一段 js 中出 ...
- 拥抱 HTML5:storage 简介以及使用方法
前言 storage 其实是个很简单的东西,基本上只要知道 javascript 中对象的概念,然后读完此文,storage 的用法也就了然于胸了. 简单来说,你可以把 storage 想象成是储存在 ...
- 我开源了一个ios应用,你们拿去随便玩
今天开源一个ios应用,自己写的,你们拿去随便玩.地址是: https://github.com/huijimuhe/prankPro 光拿来玩不理清个来龙去脉玩的也不开心是吧,那我就给你们摆摆来龙去 ...
- requirejs:性能优化-及早并行加载
为了提高页面的性能,通常情况下,我们希望资源尽可能地早地并行加载.这里有两个要点,首先是尽早,其次是并行. 通过data-main方式加载要尽可能地避免,因为它让requirejs.业务代码不必要地串 ...
- Reflection和Expression Tree解析泛型集合快速定制特殊格式的Json
很多项目都会用到Json,而且大部分的Json都是格式固定,功能强大,转换简单等,标准的key,value集合字符串:直接JsonConvert.SerializeObject(List<T&g ...
- redis入门配置
简介: Redis是Nosql中比较出名的,分布式数据库缓存,提升相应的速度,降低对数据库的访问! Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,(永久 ...