在统计理论中,Bhattacharyya距离用来度量两个离散或连续概率分布的相似性。它与Bhattacharyya系数(Bhattacharyya coefficient)高度相关,后者是用来度量两个统计样本的重叠度的。所有这些命名都是为了纪念A. Bhattacharyya,一个在1930年工作于印度统计局的统计学家。该系数可以用来度量两个样本集的相似性。它通常在分类问题中被用来判断类别的可分性。

目录

·定义

·Bhattacharyya系数

定义

对于定义在同一个定义域X上的两个离散概率分布p和q来说,它们之间的Bhattacharyya距离可定义如下:

这里

被称为Bhattacharyya系数。

对于连续概率分布,Bhattacharyya系数可以定义如下:

在以上两种情况下,0<=BC<=1并且0<=DB<=∞。DB并不遵循三角不等式,但是Hellinger距离满足三角不等式。

对于一个多维高斯分布来说pi=N(mi,Pi),

这里mi和Pi分别代表该分布的均值和方差,并且

注意到,在这种情况下Bhattacharyya距离的第一项类似于Mahalanobis距离(马氏距离)。

Bhattacharyya系数

Bhattacharyya系数用来度量两个统计样本的重叠度。该系数可以用来度量两个样本集的可分性。

计算Bhattacharyya系数包含了一个基本的关于两个样本集重合度的积分运算。两个样本集中的定义域被分成了事前定义的几份,这种划分可以体现在下面的定义中:

其中a,b代表样本,n代表划分的数目,∑ai和∑bi分别代表两个样本集中在第i个划分中的样本之和。

对于两个样本集来说,如果相同划分中的样本数越多,样本和越大,则该式的值越大。划分数的选择取决于每一个样本集中的样本数:太少的划分将因为过高估计了重叠区域而减小精度,而太多的划分将会因为在本该有重叠的区域没有恰好重叠而减小精度(最精细的划分将会使每一个相同的区间中都没有重叠)。

如果在每一个划分区间内的乘积都为零,则Bhattacharyya系数也为零。这就意味着如果A和B两个样本集都与样本集C完全可分,则BC(A,C)=B(B,C)=0,即Bhattacharyya系数对于A和B无法区分。

上述内容来自wikipedia

http://en.wikipedia.org/wiki/Bhattacharyya_distance

paper 113:Bhattacharyya distance的更多相关文章

  1. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  2. paper 112:hellinger distance

    在概率论和统计理论中,Hellinger距离被用来度量两个概率分布的相似度.它是f散度的一种(f散度——度量两个概率分布相似度的指标).Hellinger距离被定义成Hellinger积分的形式,这种 ...

  3. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  4. paper 141:some paper with ComputerCV、MachineLearning[转]

    copy from:http://blog.csdn.net/zouxy09/article/details/8550952 一.特征提取Feature Extraction: ·         S ...

  5. paper 97:异质人脸识别进展的资讯

    高新波教授团队异质人脸图像识别研究取得新突破,有望大大降低刑侦过程人力耗费并提高办案效率         近日,西安电子科技大学高新波教授带领的研究团队,在异质人脸图像识别研究领域取得重要进展,其对香 ...

  6. paper 94:视觉领域博客资源1之中国部分

    这是收录的图像视觉领域的博客资源的第一部分,包含:中国内地.香港.台湾 这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享的paper.code或者数据集不 ...

  7. paper 92:图像视觉博客资源2之MIT斯坦福CMU

    收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...

  8. paper 91:边缘检测近期最新进展的讨论

    VALSE QQ群对边缘检测近期最新进展的讨论,内容整理如下: 1)推荐一篇deep learning的文章,该文章大幅度提高了edge detection的精度,在bsds上,将edge detec ...

  9. paper 86:行人检测资源(上)综述文献【转载,以后使用】

    行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域.从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个 ...

随机推荐

  1. Highcharts用函数动态填充静态值

    这种方式适用于其他动态函数模式 series: [{ name: 'Random data', data: (function() { // generate an array of random d ...

  2. TCP连接探测中的Keepalive和心跳包

    TCP连接探测中的Keepalive和心跳包 tcp keepalive 心跳 保活 Linuxtcp心跳keepalive保活1. TCP保活的必要性 1) 很多防火墙等对于空闲socket自动关闭 ...

  3. C#常用方法二

    public sealed class StringTool { /// <summary> /// 将txt文件读入字符串 /// </summary> /// <pa ...

  4. 模拟淘宝使用cookie记录登录名,

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  5. Quartz.net 的简单使用,创建定时任务

    ISchedulerFactory sf = new StdSchedulerFactory(); sched = sf.GetScheduler(); JobDetail job = new Job ...

  6. Python一行代码

    1:Python一行代码画出爱心 print]+(y*-)**-(x**(y*<= ,)]),-,-)]) 2:终端路径切换到某文件夹下,键入: python -m SimpleHTTPServ ...

  7. 配置perl-cgi的运行环境,由于Active Perl安装在d:\perl

    Apache 1.3.22 for Win32+PHP 4.0.6+Active Perl 5.006001+Zend Optimizer v1.1.0+mod_gzip 1.3.19.1a+MySQ ...

  8. BizTalk2010动手实验(二)第一个BizTalk应用

    1 课程简介 通过本课程了解BizTalk 的消息机制,发布与订阅机制 2 准备工作 3 操作步骤 3.1 创建BizTalk应用程序 1. 新建应用程序 2. 输入应用程序名称 3.2 创建与配置接 ...

  9. I/O存取方式的形象比喻

    I/O存取有三种方式:可编程I/O.中断驱动I/O.DMA,分别可理解如下: 下面以老师向班里同学收发作业来类比I/O存取,办公室表示内存,即,I操作表示:老师向学生收作业,然后存放到办公室里:O操作 ...

  10. C# 常用结构

    几种常用类的基本结构如下: public Size( double width, double height ) public Point( double x, double y) public Ve ...