做题记录:2016-08-15 15:47:07

背景

NOIP2008复赛提高组第三题

描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式

输入文件message.in的第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出格式

输出文件message.out共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

测试样例1

输入

3 3 
0 3 9 
2 8 5 
5 7 0

输出

34

备注

30%的数据满足:1<=m,n<=10

100%的数据满足:1<=m,n<=50

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int N,M,a[][],f[][][];
int main(){
// freopen("01.txt","r",stdin);
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
scanf("%d",&a[i][j]);
}
}
for(int i=;i<=N+M;i++){
for(int k=;k<=i&&k<=N;k++){
for(int j=;j<=i&&j<=N;j++){
if(j!=k||i==N+M){
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]+=(a[j][i-j+]+a[k][i-k+]);//通过步数i与第一条路线行数j以及第二条路线行数k计算横坐标
}
}
}
}
printf("%d\n",f[N+M][N][N]);
return ;
}

可以看成从(1,1)到(m,n)找两条不相交的路径

f(i,j,k)表示传到第i个人,第一条路径在第j行,第二条路径在第k行的最大价值

以上题目没有考虑同位置的情况,下面给出同类题目

题目描述

设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放

人数字0。如下图所示(见样例):

A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B

某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B

点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个

表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式:

只需输出一个整数,表示2条路径上取得的最大的和。

输入输出样例

输入样例#1:

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:

67

说明

NOIP 2000 提高组第四题

代码

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[][],f[][][];
int N,x,y,z;
int main(){
// freopen("01.txt","r",stdin);
scanf("%d",&N);
while((scanf("%d%d%d",&x,&y,&z)==)&&(x+y+z>))
a[x][y]=z; for(int i=;i<=*N;i++){
for(int j=;j<=N&&j<=i;j++){
for(int k=;k<=N&&k<=i;k++){
if(j!=k||i==N*){
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]+=(a[j][i-j+]+a[k][i-k+]);
}
else if(i == j) {
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]+=a[j][i-j+];
//此处可以用一个变量统计 f[i][j][k],
//最后再判断 (i == j),节省代码长度
}
}
}
} printf("%d\n",f[*N][N][N]);
return ;
}

转载题解:

由于本题的数据规模很小,所以(n^4)的方法也能解决。但是的规模增大的时候我们就必须对算法进行优化了。

很明显dp[i1][j1][i2][j2]的四维状态描述了所有可能的走法,当然我们也可以改变状态的表示法,减少状态的维数。

f[k][i][j] = max { f[k-1][i][j], f[k-1][i-1][j-1], f[k-1][i-1][j],f[k-1][I][j-1] } + (i==j ? a[k-i][i] : a[k-i+1][i]+a[k-j+1][j])

f[k][i][j]表示走了k步,第一条路向右走i步,第二条路向右走j步。

每条路的每个位置都可以从它的上方或左方得到,所以max{}里会有四个状态。还有
如果两条路走到了同一位置,那么该位置的数只加一次.

TYVJ 1011 NOIP 2008&&NOIP 2000 传纸条&&方格取数 Label:多线程dp的更多相关文章

  1. P1006 传纸条 (方格取数dp)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  2. TYVJ 矩阵取数 Label:高精度+dp

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  3. tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

    P1884 [NOIP2000T4]方格取数 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 [noip2000T4]方格取数 描述 设有N*N的方格图(N& ...

  4. 1043 方格取数 2000年NOIP全国联赛提高组

    1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond         题目描述 Description 设有N* ...

  5. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

  6. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  7. 四维dp,传纸条,方格取数

    四维dp例题 四维dp便是维护4个状态的dp方式 拿题来说吧. 1. 洛谷P1004 方格取数 #include<iostream> #include<cstdio> usin ...

  8. 历年真题 未完成(Noip 2008 - Noip 2017)

    Noip 2008 :全部 Noip 2009 :全部 Noip 2010 :AK Noip 2011 :AK Noip 2012 : Vigenère 密码,国王游戏,开车旅行 Noip 2013 ...

  9. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

随机推荐

  1. HDOJ 1869

    #include<stdio.h> ][]; #define inf 0xffffff; void floyed(int n) { int i,j,k; ;k<n;k++) { ;i ...

  2. 【Hibernate】Hibernate系列2之Session详解

    Session详解 2.1.概述-一级缓存 2.2.操作session缓存方法 2.3.数据库隔离级别 2.4.持久化状态 2.5.状态转换 2.6.存储过程与触发器

  3. C#中Const和Readonly的区别

    const 的概念就是一个包含不能修改的值的变量.常数表达式是在编译时可被完全计算的表达式.因此不能从一个变量中提取的值来初始化常量.如果 const int a = b+1;b是一个变量,显然不能再 ...

  4. Google Code Jam 2014 Round 1B Problem B

    二进制数位DP,涉及到数字的按位与操作. 查看官方解题报告 #include <cstdio> #include <cstdlib> #include <cstring& ...

  5. NanoApe Loves Sequence-待解决

    NanoApe Loves Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java ...

  6. import static和import的区别

    import static静态导入是JDK1.5中的新特性.一般我们导入一个类都用 import com.....ClassName;而静态导入是这样:import static com.....Cl ...

  7. [Android Pro] 内容提供者ContentProvider的基本使用

    一.ContentProvider简介 当应用继承ContentProvider类,并重写该类用于提供数据和存储数据的方法,就可以向其他应用共享其数据.ContentProvider为存储和获取数据提 ...

  8. SQLServer语句大使

    1.创建数据库create database 数据库名字 2.删除数据库drop database 数据库名字3.创建表(identity(1,1)自动增长,倍数为1,primary key设置主键) ...

  9. VS2013+opencv2.4.9(10)配置

    1. 下载opencv2.4.9,然后解压到一个位置 设置opencv SDK解压目录,点击Extract后解压   我是习惯于解压到这个位置的.   解压过程如上图.  2. 文件目录介绍  解压后 ...

  10. onItemClick 参数解释

    X, Y两个listview,X里有1,2,3,4这4个item,Y里有a,b,c,d这4个item.如果你点了b这个item.如下:public void onItemClick (AdapterV ...