做题记录:2016-08-15 15:47:07

背景

NOIP2008复赛提高组第三题

描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式

输入文件message.in的第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。
接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出格式

输出文件message.out共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

测试样例1

输入

3 3 
0 3 9 
2 8 5 
5 7 0

输出

34

备注

30%的数据满足:1<=m,n<=10

100%的数据满足:1<=m,n<=50

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int N,M,a[][],f[][][];
int main(){
// freopen("01.txt","r",stdin);
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++){
for(int j=;j<=M;j++){
scanf("%d",&a[i][j]);
}
}
for(int i=;i<=N+M;i++){
for(int k=;k<=i&&k<=N;k++){
for(int j=;j<=i&&j<=N;j++){
if(j!=k||i==N+M){
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]+=(a[j][i-j+]+a[k][i-k+]);//通过步数i与第一条路线行数j以及第二条路线行数k计算横坐标
}
}
}
}
printf("%d\n",f[N+M][N][N]);
return ;
}

可以看成从(1,1)到(m,n)找两条不相交的路径

f(i,j,k)表示传到第i个人,第一条路径在第j行,第二条路径在第k行的最大价值

以上题目没有考虑同位置的情况,下面给出同类题目

题目描述

设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放

人数字0。如下图所示(见样例):

A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B

某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B

点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个

表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式:

只需输出一个整数,表示2条路径上取得的最大的和。

输入输出样例

输入样例#1:

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:

67

说明

NOIP 2000 提高组第四题

代码

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[][],f[][][];
int N,x,y,z;
int main(){
// freopen("01.txt","r",stdin);
scanf("%d",&N);
while((scanf("%d%d%d",&x,&y,&z)==)&&(x+y+z>))
a[x][y]=z; for(int i=;i<=*N;i++){
for(int j=;j<=N&&j<=i;j++){
for(int k=;k<=N&&k<=i;k++){
if(j!=k||i==N*){
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]+=(a[j][i-j+]+a[k][i-k+]);
}
else if(i == j) {
f[i][j][k]=max(f[i][j][k],f[i-][j][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k]);
f[i][j][k]=max(f[i][j][k],f[i-][j][k-]);
f[i][j][k]=max(f[i][j][k],f[i-][j-][k-]);
f[i][j][k]+=a[j][i-j+];
//此处可以用一个变量统计 f[i][j][k],
//最后再判断 (i == j),节省代码长度
}
}
}
} printf("%d\n",f[*N][N][N]);
return ;
}

转载题解:

由于本题的数据规模很小,所以(n^4)的方法也能解决。但是的规模增大的时候我们就必须对算法进行优化了。

很明显dp[i1][j1][i2][j2]的四维状态描述了所有可能的走法,当然我们也可以改变状态的表示法,减少状态的维数。

f[k][i][j] = max { f[k-1][i][j], f[k-1][i-1][j-1], f[k-1][i-1][j],f[k-1][I][j-1] } + (i==j ? a[k-i][i] : a[k-i+1][i]+a[k-j+1][j])

f[k][i][j]表示走了k步,第一条路向右走i步,第二条路向右走j步。

每条路的每个位置都可以从它的上方或左方得到,所以max{}里会有四个状态。还有
如果两条路走到了同一位置,那么该位置的数只加一次.

TYVJ 1011 NOIP 2008&&NOIP 2000 传纸条&&方格取数 Label:多线程dp的更多相关文章

  1. P1006 传纸条 (方格取数dp)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  2. TYVJ 矩阵取数 Label:高精度+dp

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  3. tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

    P1884 [NOIP2000T4]方格取数 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 [noip2000T4]方格取数 描述 设有N*N的方格图(N& ...

  4. 1043 方格取数 2000年NOIP全国联赛提高组

    1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond         题目描述 Description 设有N* ...

  5. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

  6. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  7. 四维dp,传纸条,方格取数

    四维dp例题 四维dp便是维护4个状态的dp方式 拿题来说吧. 1. 洛谷P1004 方格取数 #include<iostream> #include<cstdio> usin ...

  8. 历年真题 未完成(Noip 2008 - Noip 2017)

    Noip 2008 :全部 Noip 2009 :全部 Noip 2010 :AK Noip 2011 :AK Noip 2012 : Vigenère 密码,国王游戏,开车旅行 Noip 2013 ...

  9. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

随机推荐

  1. 阿里云服务器配置 SVN 服务器与生产站点同步

    作为linux的门外汉,一直觊觎svn的方便性,在有台aliyun的情况下,一起来搞搞.   1.环境   阿里云 centos5.5   2.安装svn   yum -y install subve ...

  2. 关于LINUX文件与目录的问题说明

    文件权限一般可认为是0 123 456 789,一共十位: 0:表示该文件的文件类型.Windows里面是使用了一种文件关联的技术,通过扩展名来关联相应的应用程序,使得双击某个文件,就能达到调用相应的 ...

  3. Linux MySQL差异备份技巧

    MSSQL差异备份使用技巧 15 Apr 2013 所谓的差异备份,就是只备份最近一次备份之后到此次备份之前所增加的那一部分数据.打个比方我第N次备份后数据库存放的内容是ABCD,然后我第N+1次 备 ...

  4. 【SpringMVC】SpringMVC系列15之SpringMVC最佳实践

    15.SpringMVC最佳实践 15.1.遵循Restful API最佳实践 参考:http://segmentfault.com/a/1190000002949234 15.2.统一返回字段 15 ...

  5. 对 Linux 新手非常有用的 20 个命令

    参考:http://www.oschina.net/translate/useful-linux-commands-for-newbies 英文原文:http://www.tecmint.com/us ...

  6. 解决虚拟机 正在决定eht0 的ip信息失败 无链接-- 虚拟机上linux redhat 上网问题

    对于虚拟机上,linux redhat上网的配置方式有三种 一.用setup命令进行配置(具体技巧可查setup命令的使用) 二.直接用 ifconfig eth0  ip地址进行配置 三.进入系统文 ...

  7. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. 2.saltstack笔记之目标,模块,返回写入数据库

    作者:刘耀 QQ:22102107 一.目标(targeting Minions) 1.匹配Minions Id 匹配所有 (*) [root@node1 salt]# salt '*' test.p ...

  9. springJDBC实现mysql简单分页

    效果图:

  10. ext上传文件到mysql上

    不废话,上代码: controller如下: /** * 上传附件 * @param request * @param baseBlob * @param response */ @RequestMa ...