BZOJ4361 : isn
设$f[i]$表示长度为$i$的不下降子序列的个数。
考虑容斥,对于长度为$i$的子序列,如果操作不合法,那么之前一定是一个长度为$i+1$的子序列,所以答案$=\sum_{i=1}^n(f[i]\times (n-i)!-f[i+1]\times (n-i-1)!\times (i+1))$。
时间复杂度$O(n^2\log n)$。
#include<cstdio>
#include<algorithm>
const int N=2010,P=1000000007;
int n,i,j,x,a[N],b[N],bit[N][N],f[N],fac[N],ans;
inline void up(int&x,int y){x+=y;if(x>=P)x-=P;}
inline int lower(int x){
int l=1,r=n,mid,t;
while(l<=r)if(b[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
return t;
}
inline void add(int p,int x,int y){for(;x<=n;x+=x&-x)up(bit[p][x],y);}
inline int ask(int p,int x){int t=0;for(;x;x-=x&-x)up(t,bit[p][x]);return t;}
int main(){
for(scanf("%d",&n),i=fac[0]=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i],fac[i]=1LL*fac[i-1]*i%P;
std::sort(b+1,b+n+1),add(0,1,1);
for(i=1;i<=n;i++)for(a[i]=lower(a[i]),j=i;j;j--)up(f[j],x=ask(j-1,a[i])),add(j,a[i],x);
for(i=1;i<=n;i++){
up(ans,1LL*f[i]*fac[n-i]%P);
if(i<n)up(ans,P-1LL*f[i+1]*fac[n-i-1]%P*(i+1)%P);
}
return printf("%d",ans),0;
}
BZOJ4361 : isn的更多相关文章
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- 【BZOJ4361】isn(动态规划,容斥)
[BZOJ4361]isn(动态规划,容斥) 题面 BZOJ 题解 首先我们如果确定了一个不降序列,假设它的长度为\(i\), 那么可行的方案数为\(i*(n-i)!\),但是这样有一些非法的情况,即 ...
- BZOJ4361 isn 【树状数组优化DP】*
BZOJ4361 isn Description 给出一个长度为n的序列A(A1,A2-AN).如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止.求有多少种不同的操作方案,答案模1 ...
- BZOJ4361 isn(动态规划+树状数组+容斥原理)
首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...
- 【BZOJ4361】isn
题目 [BZOJ4361]isn 做法 \(dp_{i,j}\)表示以\(i\)结尾\(j\)长度,树状数组\(tree_{i,j}\)表长度为\(i\),以\(<=j\)结尾的个数,显然\(d ...
- BZOJ4361 isn 树状数组、DP、容斥
传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 ...
- bzoj4361 isn(树状数组优化dp+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 938 Solved: 485[Submit][Status][Discuss] ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- bzoj4361:isn(dp+容斥+树状数组)
题面 darkbzoj 题解 \(g[i]\)表示长度为\(i\)的非降序列的个数 那么, \[ ans = \sum_{i=1}^{n}g[i]*(n-i)!-g[i+1]*(n-i-1)!*(i+ ...
随机推荐
- iPhone socket 编程之BSD Socket篇
iPhone socket 编程之BSD Socket篇 收藏在进行iPhone网络通讯程序的开发中,不可避免的要利用Socket套接字.iPhone提供了Socket网络编程的接口CFSocket, ...
- 通过IIS调试ASP.NET项目
当我们使用Visual Studio调试的时候,通常我们会选择VS自带的ASP.NET Developerment Server(也是默认选项),当第一次调试的时候(按F5或Ctrl+F5不调试直接打 ...
- hiho #1288 微软2016.4校招笔试题 Font Size
#1288 : Font Size 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Steven loves reading book on his phone. The ...
- Linux rsync 命令详解
服务器之间常常要保持些文件或目录的一致,比如一些大的软件下载网站,它们通常使用多台服务器来提供下载服务.当一台服务器上的文件更新后,其它的服务器 也需要更新,而且 在更新的时候应该是只对新增或是修改过 ...
- MySQL Profiling 的使用
MySQL Profiling 的使用 在本章第一节中我们还提到过通过 Query Profiler 来定位一条 Query 的性能瓶颈,这里我们再详细介绍一下 Profiling 的用途及使用方法. ...
- 转载一篇关于ios copy的文章
由于原文创作时间较早,一些内容不实用了,我对其进行了加工,去掉了一部分内容,添加了一点注释. 原文连接 http://www.cnblogs.com/ydhliphonedev/archive/201 ...
- Java for LeetCode 189 Rotate Array
Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the array ...
- 【USACO】milk3
倒牛奶的问题, 开始看感觉跟倒水的问题很像, 想直接找规律, 写个类似于循环取余的代码. 但后来发现不行,因为这道题有三个桶,水量也是有限制的.只好用模拟的方法把所有的情况都试一遍. 建一个state ...
- 编译qt
进入开始菜单Microsoft Visual Studio 2010,Visual Studio Tools,Visual Studio Command Prompt (2010),需要注意的是,这里 ...
- 正则和xml解析
一般来说是xml解析的开销比正则大些.使用正则搜索,只需搜索<second>就能定位到你要的内容,而xml解析要把节点树在内存中建立起来,所以消耗内存会多些,速度可能会受到一些影响.但对于 ...