Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

 
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 
Sample Output
2 -1
 
 dijkstra代码:
 #include <stdio.h>
#define N 210
#define INF 100000000
int n, m;
int vis[N], dis[N], cost[N][N];
int min(int x, int y)
{
return x < y ? x : y;
}
void dijkstra(int s, int t)
{
int u, v;
for(u = ; u < n; u++)
{
vis[u] = ;
dis[u] = INF;
}
dis[s] = ;
while(true)
{
v = -;
for(u = ; u < n; u++)
if(!vis[u] && (v == - || dis[u]<dis[v]))
v = u;
if(v == -)
break;
vis[v] = ;
for(u = ; u < n; u++)
dis[u] = min(dis[u], dis[v]+cost[v][u]);
if(v == t)
break;
}
if(dis[t] == INF)
printf("-1\n");
else
printf("%d\n", dis[t]);
return ;
}
int main()
{
int s, t;
while(~scanf("%d%d", &n, &m))
{
//if(n<0 || n>=200 || m<0 || m>= 1000)
// break;
int i, j, a, b, c;
for(i = ; i < n; i++)
for(j = ; j < n; j++)
cost[i][j] = INF;
while(m --)
{
scanf("%d%d%d", &a, &b, &c);
if(cost[a][b] > c)
cost[a][b] = cost[b][a] = c;
}
scanf("%d%d", &s, &t);
dijkstra(s, t);
}
return ;
}

spfa代码:

 #include <stdio.h>
#include <queue>
#include <string.h>
#define INF 0x3f3f3f3f
using namespace std;
int n, m, cnt, t;
int vis[], used[], dis[];
int head[];
struct node
{
int from, to, val, next;
}edge[];
int add(int x, int y, int z)
{
edge[cnt].from = x;
edge[cnt].to = y;
edge[cnt].val = z;
edge[cnt].next = head[x];
head[x] = cnt++;
}
void spfa(int s)
{
priority_queue <int> q;
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
memset(used, , sizeof(used));
vis[s] = ;
dis[s] = ;
q.push(s);
while(!q.empty())
{
int x = q.top();
q.pop();
vis[x] = ;
for(int i = head[x]; i != -; i = edge[i].next)
{
int y = edge[i].to;
if(dis[y] > dis[x]+edge[i].val)
{
dis[y] = dis[x]+edge[i].val;
q.push(y);
vis[y] = ;
used[y]++;
if(used[y] > n)
return ;
}
}
}
if(q.empty())
{
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n", dis[t]);
}
return ;
}
int main()
{
int s, a, b, x;
while(~scanf("%d%d", &n, &m))
{
cnt = ;
memset(head, -, sizeof(head));
while(m--)
{
scanf("%d%d%d", &a, &b, &x);
add(a, b, x);
add(b, a, x);
}
scanf("%d%d", &s, &t);
spfa(s);
}
return ;
}

floyd算法:

 #include <stdio.h>
#define INF 0x3f3f3f3f
#define N 210
int dis[N][N];
int n, m;
void init()
{
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
if(j == i)
dis[i][j] = ;
else
dis[i][j] = INF;
}
void floyd()
{
for(int k = ; k < n; k++)
for(int i = ; i < n; i++)
{
if(dis[i][k] != INF)
{
for(int j = ; j < n; j++)
if(dis[i][j] > dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j];
}
}
}
int main()
{
int a, b, x;
while(~scanf("%d%d", &n, &m))
{
init();
while(m--)
{
scanf("%d%d%d", &a, &b, &x);
if(dis[a][b] > x)
dis[a][b] = dis[b][a] = x;
}
floyd();
int s, t;
scanf("%d%d", &s, &t);
if(dis[s][t] != INF)
printf("%d\n", dis[s][t]);
else
printf("-1\n");
}
return ;
}

hdoj 1874 畅通工程续的更多相关文章

  1. hdoj 1874 畅通工程续【dijkstra算法or spfa算法】

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. hdoj 1874 畅通工程续(单源最短路+dijkstra)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 思路分析:该问题给定一个无向图.起始点和终点,要求求出从起始点到终点的最短距离: 使用Dijks ...

  3. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

  4. hdu 1874 畅通工程续

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过 ...

  5. HDU 1874畅通工程续(迪杰斯特拉算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Time Limit: 3000/1000 MS (Java/Others)     ...

  6. HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题

    参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...

  7. hdu 1874 畅通工程续 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 题目分析:输入起点和终点,顶点的个数,已连通的边. 输出起点到终点的最短路径,若不存在,输出-1 ...

  8. HDU 1874 畅通工程续【Floyd算法实现】

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. hdu 1874 畅通工程续(求最短距离,dijkstra,floyd)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************* ...

随机推荐

  1. ASP.NET中进行消息处理(MSMQ) 一(转)

    MSMQ是微软消息队列的英文缩写.那么什么是消息队列?这些介绍网上一大片这里就不多说了.本文对于大虾级的人物来说这只是小玩意而已,对于初学者来说这文章还是有一定的帮助,希望路过的大虾们别笑话我班门弄斧 ...

  2. IIS部署WCF

    IIS部署WCF [转载自——http://www.cnblogs.com/starksoft/p/4992059.html] 1 部署IIS 1.1 安装WAS IIS原本是不支持非HTTP协议的服 ...

  3. Web服务器禁止range请求

    range: 请求一般是多线程下载的客户端程序使用 在httpd.conf中增加下面的配置,可以禁止range请求: RewriteEngine onRewriteCond %{HTTP:Range} ...

  4. [转载]: delphi中XLSReadWrite控件的使用(2)---delphi XE下安装

    一.下载 官方下载网址: http://www.axolot.com/components/download.htm 从这里可以下载到从Delphi5到DelphiXE全部支持的版本. 二.软件安装 ...

  5. 【转】关于LWF——线性工作流

    1.什么是LWF? LWF全称Linear Workflow,中文翻译为线性工作流.“工作流”在这里可以当作工作流程来理解.LWF就是一种通过调整图像Gamma值,来使得图像得到线性化显示的技术流程. ...

  6. IT在线笔试总结(一)

    综述:IT公司的技术类笔试,主要考察: (1)知识面的广度.主要考察一些业内通用性的知识,以及某一职务所必须具备的业务知识. (2)智力测试.主要考察记忆力,思维能力和学习新知识的能力. (3)技能测 ...

  7. 30、shiro框架入门2,关于Realm

    1.Jdbc的Realm链接,并且获取权限 首先创建shiro-jdbc.ini的配置文件,主要配置链接数据库的信息 配置文件中的内容如下所示 1.变量名=全限定类名会自动创建一个类实例 2.变量名. ...

  8. 初识Memcached

    一,什么是memcached? Memcached是一个高性能的分布式内存对象缓存系统,用于动态web应用以减轻数据库负载..它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱 ...

  9. linux 驱动学习笔记01--Linux 内核的编译

    由于用的学习材料是<linux设备驱动开发详解(第二版)>,所以linux驱动学习笔记大部分文字描述来自于这本书,学习笔记系列用于自己学习理解的一种查阅和复习方式. #make confi ...

  10. 《深入理解Nginx》阅读与实践(三):使用upstream和subrequest访问第三方服务

    本文是对陶辉<深入理解Nginx>第5章内容的梳理以及实现,代码和注释基本出自此书. 一.upstream:以向nginx服务器的请求转化为向google服务器的搜索请求为例 (一)模块框 ...