Problem G. Generators

Input file: generators.in

Output file: generators.out
Little Roman is studying linear congruential generators — one of the oldest and best known pseudorandom number generator algorithms. Linear congruential generator (LCG) starts with a non-negative integer number x0 also known as seed and produces an infinite sequence of non-negative integer numbers xi (0 ≤ xi < c) which are given by the following recurrence relation:
xi+1 = (axi + b) mod c
here a, b, and c are non-negative integer numbers and 0 ≤ x0 < c. Roman is curious about relations between sequences generated by different LCGs. In particular, he has n different LCGs with parameters a(j), b(j), and c(j) for 1 ≤ j ≤ n, where the j-th LCG is generating a sequence x(j) i . He wants to pick one number from each of the sequences generated by each LCG so that the sum of the numbers is the maximum one, but is not divisible by the given integer number k. Formally, Roman wants to find integer numbers tj ≥ 0 for 1 ≤ j ≤ n to maximize s =Pn j=1 x(j) tj subject to constraint that s mod k 6= 0. Input The first line of the input file contains two integer numbers n and k (1 ≤ n ≤ 10000, 1 ≤ k ≤ 109). The following n lines describe LCGs. Each line contains four integer numbers x(j) 0 , a(j), b(j), and c(j) (0 ≤ a(j),b(j) ≤ 1000, 0 ≤ x(j) 0 < c(j) ≤ 1000). Output If Roman’s problem has a solution, then write on the first line of the output file a single integer s — the maximum sum not divisible by k, followed on the next line by n integer numbers tj (0 ≤ tj ≤ 109) specifying some solution with this sum. Otherwise, write to the output file a single line with the number −1.
Sample input and output
2 3

1 1 1 6

2 4 0 5

8

4

1

2 2

0 7 2 8

2 5 0 6

-1

In the first example, one LCG is generating a sequence 1, 2, 3, 4, 5, 0, 1, 2, ..., while the other LCG a sequence 2, 3, 2, 3, 2, ....

In the second example, one LCG is generating a sequence 0, 2, 0, 2, 0, ..., while the other LCG a sequence 2, 4, 2, 4, 2, ....

题目中的xi+1是指xi的下一项。

第四场训练赛的题,是欧洲赛的题,比赛地址:传送门

题意:n行,每行x,a,b,c,推公式,每一行在这一行当中取一个数使得他们的和最大且不能被k整除,如果不存在输出-1。

题解:记录第一大和第二大的数,并且第二大的数不能被k整除,求出所有行中与第一个数相差最小的这个第二个数。如果最大的数的所有总和被k整除,就用这个数去换,记得用数组记录选取的数的下标。鸽笼原理最多c个数,如果算过就可以跳出,用动态数组记录。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
using namespace std;
const int maxn=1e6+;
const int mm=;
bool vis[maxn];
int f1[maxn],f2[maxn];
int main()
{
freopen("generators.in","r",stdin);
freopen("generators.out","w",stdout);
int n,k,ans=,tmp=mm,flag=-;
scanf("%d%d",&n,&k);
for(int i=; i<n; i++)
{ int x,a,b,c;
scanf("%d%d%d%d",&x,&a,&b,&c);
for(int j=; j<c; j++)
vis[j]=;
vector <int> data;
for(int j=; j<c; j++)
{
if(vis[x]) break;
vis[x]=;
data.push_back(x);
x=(a*x+b)%c;
}
int max1=-,max1i=-;
for (int i = ; i < data.size(); i++)
{
if (data[i] > max1)
{
max1 = data[i];
max1i = i;
}
}
ans+=max1;
int max2=-,max2i=-;
int tmp2=max1%k;
for (int i = ; i < data.size(); i++)
{
if (data[i] > max2&&(data[i]%k)!=tmp2)
{
max2 = data[i];
max2i = i;
}
}
f1[i]=max1i;
f2[i]=max2i;
int minn=max1-max2;
if(max2i!=-&&minn<tmp)
{
tmp=minn;
flag=i;
}
//cout<<max1<<" "<<max2<<endl;
}
if(ans%k==&&flag==-)
{
cout<<-<<endl;
}
else if(ans%k==)
{
f1[flag]=f2[flag];
ans-=tmp;
cout<<ans<<endl;
for(int i=;i<n-;i++)
cout<<f1[i]<<" ";
cout<<f1[n-]<<endl;
}
else
{
cout<<ans<<endl;
for(int i=;i<n-;i++)
cout<<f1[i]<<" ";
cout<<f1[n-]<<endl;
}
return ;
}

Gym 100851G Generators (vector+鸽笼原理)的更多相关文章

  1. CodeChef February Challenge 2018 Points Inside A Polygon (鸽笼原理)

    题目链接  Points Inside A Polygon 题意  给定一个$n$个点的凸多边形,求出$[ \frac{n}{10}]\ $个凸多边形内的整点. 把$n$个点分成$4$类: 横坐标奇, ...

  2. 1393 0和1相等串 鸽笼原理 || 化简dp公式

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1393 正解一眼看出来的应该是鸽笼原理.记录每个位置的前缀和,就是dp[i ...

  3. Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)

    To become the king of Codeforces, Kuroni has to solve the following problem. He is given n numbers a ...

  4. HDU 5762 Teacher Bo (鸽笼原理) 2016杭电多校联合第三场

    题目:传送门. 题意:平面上有n个点,问是否存在四个点 (A,B,C,D)(A<B,C<D,A≠CorB≠D)使得AB的横纵坐标差的绝对值的和等于CD的横纵坐标差的绝对值的和,n<1 ...

  5. POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)

    描述 http://poj.org/problem?id=1065 木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次). Wo ...

  6. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  7. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  8. UVA 10620 - A Flea on a Chessboard(鸽笼原理)

    UVA 10620 - A Flea on a Chessboard 题目链接 题意:给定一个跳蚤位置和移动方向.如今在一个国际象棋棋盘上,左下角为黑格,一个格子为s*s,推断是否能移动到白格子.问要 ...

  9. Gym - 100851G:Generators(人尽皆知但是WA题)

    题意:现在有函数,每一项Xi=(A*X(i-1)+B)%C.现在给定N个函数以及K:X0,A,B,C.然你再每个函数选择一个数,使得其和最大,而且不被K整除. X0,A,B,C<=1e3 :K& ...

随机推荐

  1. 【BZOJ-2818】Gcd 线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3347  Solved: 1479[Submit][Status][Discuss ...

  2. MyEclipse10中导入的jquery文件报错(出现红叉叉,提示语法错误)

    为了做一个页面特效,导入了一个jQuery文件,怎想,myeclipse竟然报错说是语法错误,但是这个js文件我是从官网上下载的,不应该出错才对,百度谷歌之后终于找到了解决办法: 选中报错的js文件, ...

  3. [IOS Delegate和协议]

    转载请注明出处 http://blog.csdn.net/pony_maggie/article/details/25655443 作者:小马 代理和协议的语法这里不赘述,自己查资料. 这个demo的 ...

  4. iOS应用支持IPV6

    一.IPV6-Only支持是啥? 首先IPV6,是对IPV4地址空间的扩充.目前当我们用iOS设备连接上Wifi.4G.3G等网络时,设备被分配的地址均是IPV4地址,但是随着运营商和企业逐渐部署IP ...

  5. dto

    dto dto- datatransfer object(数据传输对象):dto在设计之初的主要考量是以粗粒度的数据结构减少网络通信并简化调用接口. http://www.cnblogs.com/wu ...

  6. Spring学习8-Spring事务管理(AOP/声明式式事务管理)

    一.基础知识普及 声明式事务的事务属性: 一:传播行为 二:隔离级别 三:只读提示 四:事务超时间隔 五:异常:指定除去RuntimeException其他回滚异常.  传播行为: 所谓事务的传播行为 ...

  7. form表单只提交数据而不进行页面跳转的解决方案

    一般的form提交操作写法为 代码如下: <form action="saveReport.htm" method="post"> …… <i ...

  8. 登陆后淡入淡出更换rootViewController

    - (void)restoreRootViewController:(UIViewController *)rootViewController { typedef void (^Animation) ...

  9. mysql is marked as crashed and should be repaired错误

    1.mysql数据存放路径默认为/var/lib/mysql/目录 2.用myisamchk命令修复数据表,如: myisamchk -c -r talbe.MYI

  10. win7下搭建PHP环境

    一.安装软件 1.apache下载地址:http://httpd.apache.org/download.cgi 2.php下载地址:http://windows.php.net/download/ ...