Dragon Ball

Problem Description
 
Sean has got a Treasure map which shows when and where the dragon balls will appear. some dragon balls will appear in a line at the same time for each period.Since the time you got one of them,the other dragon ball will disappear so he can only and must get one Dragon ball in each period.Digging out one ball he will lose some energy.Sean will lose |x-y| energy when he move from x to y.Suppose Sean has enough time to get any drogan ball he want in each period.We want to know the minimum energy sean will lose to get all period’s dragon ball.
 
Input
 
In the first line a number T indicate the number of test cases.Then for each case the first line contain 3 numbers m,n,x(1<=m<=50,1<=n<=1000),indicate m period Dragon ball will appear,n dragon balls for every period, x is the initial location of sean.Then two m*n matrix. For the first matrix,the number in I row and J column indicate the location of J-th Dragon ball in I th period.For the second matrix the number in I row and J column indicate the energy sean will lose for J-th Dragon ball in I-th period.
 
Output
 
For each case print a number means the minimum energy sean will lose.
 
Sample Input
 
1 3 2 5 2 3 4 1 1 3 1 1 1 3 4 2
 
Sample Output
 
8
 

题意:

  给你m天,每天在任意的一位坐标轴上出现n个球pos[i][j],0时间的时候在x位置,

  从x走向y花费abs(x-y)的价值,拿掉这个球花费cost[i][j]

  问你每次时间你都必须走向一个球拿掉它,m天后 最小花费是多少

题解:

  设定dp[i][j]表示第i天后在第j个球的最小花费,

  容易想到这是一个n*m*n的转移

  给了1.5s,值得一试

  不过你把转移方程写出来:

      对于从当前位置左边转移过来的 dp[i][j] = dp[i-1][k] - pos[i-1][k] + pos[i][j] + cost[i][j];

    对于从当前位置右边转移过来的  dp[i][j] = dp[i-1][k] + pos[i-1][k]  -pos[i][j] + cos[i][j];

  其中dp[i-1][k],pos[i-1][k];都是上一层的,这个我们预处理出就好了啊

  即使 dp[i-1][k] - pos[i-1][k] 维护最小  dp[i-1][k] + pos[i-1][k]维护最小,再二分取两者最小就可以了

  求个前缀的事。。。。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1e3+, M = 1e4, mod = ,inf = 1e9;
typedef long long ll; int dp[][N],cost[][N],pos[][N],n,m,x,allpos[N],l[N],r[N];
pair<int,int > P[N];
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&m,&n,&x);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) scanf("%d",&pos[i][j]);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) scanf("%d",&cost[i][j]); for(int i=;i<=n;i++) dp[][i] = abs(x-pos[][i])+cost[][i]; for(int j=;j<=n;j++)
P[j] = make_pair(pos[][j],dp[][j] - pos[][j]);
sort(P+,P+n+);
for(int j=;j<=n;j++) allpos[j] = P[j].first; l[] = inf;
r[n+] = inf;
for(int j=;j<=n;j++)
l[j] = min(l[j-],P[j].second);
for(int j=;j<=n;j++)
P[j] = make_pair(pos[][j],dp[][j] + pos[][j]);
sort(P+,P+n+);
for(int j=n;j>=;j--)
r[j] = min(r[j+],P[j].second); for(int i=;i<=m;i++) { for(int j=;j<=n;j++) {
int tmp = upper_bound(allpos+,allpos+n+,pos[i][j])- allpos - ;
dp[i][j] = min(l[tmp] + cost[i][j]+pos[i][j],r[tmp+] + cost[i][j] - pos[i][j]);
// cout<<dp[i][j]<<" ";
}
for(int j=;j<=n;j++)
P[j] = make_pair(pos[i][j],dp[i][j] - pos[i][j]);
sort(P+,P+n+);
for(int j=;j<=n;j++) allpos[j] = P[j].first;
l[] = inf;
r[n+] = inf;
for(int j=;j<=n;j++)
l[j] = min(l[j-],P[j].second);
for(int j=;j<=n;j++)
P[j] = make_pair(pos[i][j],dp[i][j] + pos[i][j]);
sort(P+,P+n+);
for(int j=n;j>=;j--)
r[j] = min(r[j+],P[j].second);
// cout<<endl;
}
int ans = inf;
for(int i=;i<=n;i++) ans = min(dp[m][i],ans);
printf("%d\n",ans);
}
return ;
}

HDU 4362 Dragon Ball 贪心DP的更多相关文章

  1. HDU 4362 Dragon Ball 线段树

    #include <cstdio> #include <cstring> #include <cmath> #include <queue> #incl ...

  2. HDU 5903 Square Distance (贪心+DP)

    题意:一个字符串被称为square当且仅当它可以由两个相同的串连接而成. 例如, "abab", "aa"是square, 而"aaa", ...

  3. HDU 1051 Wooden Sticks 贪心||DP

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. hdu 1257 最少拦截系统【贪心 || DP——LIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. hdu 3635 Dragon Balls (带权并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. hdu 3635 Dragon Balls(并查集应用)

    Problem Description Five hundred years later, the number of dragon balls will increase unexpectedly, ...

  7. HDU 3635 Dragon Balls(超级经典的带权并查集!!!新手入门)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  9. hdu 3635 Dragon Balls(并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. Visual Studio Online Integrations-Planning

              原文:http://www.visualstudio.com/zh-cn/explore/vso-integrations-directory-vs

  2. delphi基本语法

    本文参考自<delphi2010语法手册> 1. 工程文件结构 源文件联系着unit单元,delphi主模块源文件格式为.dpr,其他模块为.pas,一个完整程序由一个.dpr和若干.pa ...

  3. C#集合接口的继承关系图

  4. dedecms发布文章时多个Tag间分割逗号自动变成英文逗号

    dedecms发布文章时经常会添加多个Tag,我们输入汉字时总是喜欢使用全角的逗号,那么有没有办法使用JS脚本把输入的Tag间中文逗号变成英文逗号呢? dedecms发布文章时多个Tag间分割逗号自动 ...

  5. Truck History(prim & mst)

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19772   Accepted: 7633 De ...

  6. Ubuntu 开机自启动工具 update-rd.d 使用详解

    常用命令: $ sudo update-rc.d nginx defaults      #增加服务 $ sudo update-rc.d -f nginx remove    #移除服务 Linux ...

  7. NGUIJoysticK

    原始的: using UnityEngine; using System.Collections; public class NGUIJoystick : MonoBehaviour { public ...

  8. ubuntu 快速安装jre

    sudo add-apt-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracle-java7-i ...

  9. 搭建自己的ngrok服务

    转载:http://tonybai.com/2015/03/14/selfhost-ngrok-service/ 在国内开发微信公众号.企业号以及做前端开发的朋友想必对ngrok都不陌生吧,就目前来看 ...

  10. angular 监听ng-repeat结束时间

    有些时候我们想要监听angular js中的 ng-repeat结束事件,从而好初始化一些我们的第三方或者其他需要初始化的js. 我们可以这样处理: js 中这样定义 : //监听事件 是否加载完毕a ...