Dragon Ball

Problem Description
 
Sean has got a Treasure map which shows when and where the dragon balls will appear. some dragon balls will appear in a line at the same time for each period.Since the time you got one of them,the other dragon ball will disappear so he can only and must get one Dragon ball in each period.Digging out one ball he will lose some energy.Sean will lose |x-y| energy when he move from x to y.Suppose Sean has enough time to get any drogan ball he want in each period.We want to know the minimum energy sean will lose to get all period’s dragon ball.
 
Input
 
In the first line a number T indicate the number of test cases.Then for each case the first line contain 3 numbers m,n,x(1<=m<=50,1<=n<=1000),indicate m period Dragon ball will appear,n dragon balls for every period, x is the initial location of sean.Then two m*n matrix. For the first matrix,the number in I row and J column indicate the location of J-th Dragon ball in I th period.For the second matrix the number in I row and J column indicate the energy sean will lose for J-th Dragon ball in I-th period.
 
Output
 
For each case print a number means the minimum energy sean will lose.
 
Sample Input
 
1 3 2 5 2 3 4 1 1 3 1 1 1 3 4 2
 
Sample Output
 
8
 

题意:

  给你m天,每天在任意的一位坐标轴上出现n个球pos[i][j],0时间的时候在x位置,

  从x走向y花费abs(x-y)的价值,拿掉这个球花费cost[i][j]

  问你每次时间你都必须走向一个球拿掉它,m天后 最小花费是多少

题解:

  设定dp[i][j]表示第i天后在第j个球的最小花费,

  容易想到这是一个n*m*n的转移

  给了1.5s,值得一试

  不过你把转移方程写出来:

      对于从当前位置左边转移过来的 dp[i][j] = dp[i-1][k] - pos[i-1][k] + pos[i][j] + cost[i][j];

    对于从当前位置右边转移过来的  dp[i][j] = dp[i-1][k] + pos[i-1][k]  -pos[i][j] + cos[i][j];

  其中dp[i-1][k],pos[i-1][k];都是上一层的,这个我们预处理出就好了啊

  即使 dp[i-1][k] - pos[i-1][k] 维护最小  dp[i-1][k] + pos[i-1][k]维护最小,再二分取两者最小就可以了

  求个前缀的事。。。。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1e3+, M = 1e4, mod = ,inf = 1e9;
typedef long long ll; int dp[][N],cost[][N],pos[][N],n,m,x,allpos[N],l[N],r[N];
pair<int,int > P[N];
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&m,&n,&x);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) scanf("%d",&pos[i][j]);
for(int i=;i<=m;i++)
for(int j=;j<=n;j++) scanf("%d",&cost[i][j]); for(int i=;i<=n;i++) dp[][i] = abs(x-pos[][i])+cost[][i]; for(int j=;j<=n;j++)
P[j] = make_pair(pos[][j],dp[][j] - pos[][j]);
sort(P+,P+n+);
for(int j=;j<=n;j++) allpos[j] = P[j].first; l[] = inf;
r[n+] = inf;
for(int j=;j<=n;j++)
l[j] = min(l[j-],P[j].second);
for(int j=;j<=n;j++)
P[j] = make_pair(pos[][j],dp[][j] + pos[][j]);
sort(P+,P+n+);
for(int j=n;j>=;j--)
r[j] = min(r[j+],P[j].second); for(int i=;i<=m;i++) { for(int j=;j<=n;j++) {
int tmp = upper_bound(allpos+,allpos+n+,pos[i][j])- allpos - ;
dp[i][j] = min(l[tmp] + cost[i][j]+pos[i][j],r[tmp+] + cost[i][j] - pos[i][j]);
// cout<<dp[i][j]<<" ";
}
for(int j=;j<=n;j++)
P[j] = make_pair(pos[i][j],dp[i][j] - pos[i][j]);
sort(P+,P+n+);
for(int j=;j<=n;j++) allpos[j] = P[j].first;
l[] = inf;
r[n+] = inf;
for(int j=;j<=n;j++)
l[j] = min(l[j-],P[j].second);
for(int j=;j<=n;j++)
P[j] = make_pair(pos[i][j],dp[i][j] + pos[i][j]);
sort(P+,P+n+);
for(int j=n;j>=;j--)
r[j] = min(r[j+],P[j].second);
// cout<<endl;
}
int ans = inf;
for(int i=;i<=n;i++) ans = min(dp[m][i],ans);
printf("%d\n",ans);
}
return ;
}

HDU 4362 Dragon Ball 贪心DP的更多相关文章

  1. HDU 4362 Dragon Ball 线段树

    #include <cstdio> #include <cstring> #include <cmath> #include <queue> #incl ...

  2. HDU 5903 Square Distance (贪心+DP)

    题意:一个字符串被称为square当且仅当它可以由两个相同的串连接而成. 例如, "abab", "aa"是square, 而"aaa", ...

  3. HDU 1051 Wooden Sticks 贪心||DP

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. hdu 1257 最少拦截系统【贪心 || DP——LIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. hdu 3635 Dragon Balls (带权并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. hdu 3635 Dragon Balls(并查集应用)

    Problem Description Five hundred years later, the number of dragon balls will increase unexpectedly, ...

  7. HDU 3635 Dragon Balls(超级经典的带权并查集!!!新手入门)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  9. hdu 3635 Dragon Balls(并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. php 命名空间

    命名空间一个最明确的目的就是解决重名问题,PHP中不允许两个函数或者类出现相同的名字,否则会产生一个致命的错误.这种情况下只要避免命名重复就可以解决,最常见的一种做法是约定一个前缀. 例:项目中有两个 ...

  2. 安装TFS2008最终版(转载)

    一.安装操作系统:windows server 2003 + Sp2具体步骤: 1.安装windows server 2003时选用工作组(默认为workgroup).由于在工作组环境中部署,因此使用 ...

  3. ASP.NET MVC 4 跨域

    <system.webServer> <httpProtocol> <customHeaders> <add name="Access-Contro ...

  4. 读>>>>白帽子讲Web安全<<<<摘要→我推荐的一本书→1

      <白帽子讲Web安全>吴翰清著 刚开始看这本书就被这本书吸引,感觉挺不错,给大家推荐下,最近读这本书,感觉不错的精华就记录下, 俗话说>>>好脑袋不如一个烂笔头< ...

  5. LayoutComponent类,用于layout的组件类。 LayoutComponent保存的所有用于布局的数据。

      LayoutComponent ()   默认构造函数 更多...     ~LayoutComponent ()   默认的析构函数 更多...     CREATE_FUNC (LayoutC ...

  6. 服务器部署之 cap deploy:setup

    文章是从我的个人博客上粘贴过来的, 大家也可以访问 www.iwangzheng.com $ cap deploy:setup 执行到这一步的时候会时间较长,可以直接中断 * executing &q ...

  7. 详解HttpURLConnection

    请求响应流程 设置连接参数的方法 setAllowUserInteraction setDoInput setDoOutput setIfModifiedSince setUseCaches setD ...

  8. load url from future 解释

    利用url 标签之后,不管urlpatterns里的某个地址叫法怎么改变,Templates里的地址都不用修改了.在模版中调用url标签的时候,需要:{% load url from future % ...

  9. C++复数四则运算的实现

    程序主要实现复数的加减乘,数乘,取共轭功能. 将所有函数都定义为了成员函数. 使用库函数atof将字符串转换为浮点型数据. 函数主要难点在于处理输入.由于需要判断输入是选择退出还是继续,所以用字符串来 ...

  10. ListBox1控件

    前台: <div> <asp:ListBox ID="ListBox1" runat="server" AutoPostBack=" ...