直观感觉对角线重合的时候面积最大

然后可以根据方程和割补算出阴影部分的面积

注意知道两点坐标,可以求出与原点形成的三角形的面积

用叉乘,叉乘的几何意义以这两个向量为边的平行四边形的面积

所以用叉乘除以2就可以

(x1, y1), (x2, y2),叉乘为x1y2-y1x2

#include<cstdio>
#include<cmath>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; int main()
{
int n;
while(~scanf("%d", &n) && n)
{
double xa, xb, ya, yb, k1, k2;
scanf("%lf%lf%lf%lf", &xa, &ya, &xb, &yb);
k1 = ya / xa, k2 = yb / xb;
if(k1 > k2) swap(k1, k2); double L = 0, l, sum = 0;
REP(i, 0, n)
{
scanf("%lf", &l);
L += l;
sum += l * l / 2;
} double x1 = (k1 + 1) / (k2 - k1) * L;
double x2 = (k2 + 1) / (k2 - k1) * L;
double y1 = k1 * x1, y2 = k2 * x2;
printf("%.3lf\n", (x1 * y2 - x2 * y1) / 2 - sum);
} return 0;
}

紫书 习题 10-3 UVa 1643(计算几何 叉乘)的更多相关文章

  1. 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)

    用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...

  2. 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)

    很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...

  3. 紫书 习题8-12 UVa 1153(贪心)

    本来以为这道题是考不相交区间, 结果还专门复习了一遍前面写的, 然后发现这道题的区间是不是 固定的, 是在一个范围内"滑动的", 只要右端点不超过截止时间就ok. 然后我就先考虑有 ...

  4. 紫书 习题8-7 UVa 11925(构造法, 不需逆向)

    这道题的意思紫书上是错误的-- 难怪一开始我非常奇怪为什么第二个样例输出的是2, 按照紫书上的意思应该是22 然后就不管了,先写, 然后就WA了. 然后看了https://blog.csdn.net/ ...

  5. 紫书 习题 11-10 UVa 12264 (二分答案+最大流)

    书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...

  6. 紫书 习题7-13 UVa 817(dfs+栈求表达式的值)

    题目链接  点击打开链接 这道题分为两个部分, 一用搜索枚举每种可能, 二计算表达式的值, 有挺多细节需要注意 特别注意我的代码中在计算表达式的值中用到了一个!(代码枚举中的!表示不加符号, 我现在说 ...

  7. 紫书 习题7-8 UVa 12107 (IDA*)

    参考了这哥们的博客 https://blog.csdn.net/hyqsblog/article/details/46980287  (1)atoi可以char数组转int, 头文件 cstdlib ...

  8. 紫书 习题 11-7 UVa 10801 (单源最短路变形)

    把每个电梯口看作一个节点, 然后计算边的权值的时候处理一下, 就ok了. #include<cstdio> #include<vector> #include<queue ...

  9. 紫书 习题 11-17 UVa 1670 (图论构造)

    一开始要符合题目条件, 那么肯定没有任何一个点是孤立的, 也就是说没有点的度数是1 所以我就想让度数是1的叶子节点相互连起来.然后WA 然后看这哥们的博客 https://blog.csdn.net/ ...

随机推荐

  1. spm总体说明

    目录 1.如何工作 2.何时使用 1.如何工作 sql plan baseline 是一个关联sql 语句的对象,设计会影响查询优化器生成执行计划,更具体的说,一个sql baseline包含其中的一 ...

  2. + (void)initialize vs 静态构造方法

    在继承体系中,多个子类的引用,父类缺省执行一次: 特殊情况: 1)子类没有实现.调用父类方法: 2)子类显示调用父类: 3)存在分类实现,分类实现覆盖本体. Initializes the class ...

  3. 3ds Max实例教程-制作卡通蓝色小人

    此篇教程分享使用3ds Max制作卡通蓝色小人,是根据作者梦境出现的画面为原型,加以改造,得到的最终效果图. 创作一张图最重要的地方是先用纸和笔画出草稿图.你需要表明所有的细节,研究角色的特点——我发 ...

  4. C# 打开文件 保存文件

    string path = @"C: \Users\users\Desktop\xxxx.txt";// 文件路径 FileStream filestream = new File ...

  5. Mojo C++ System API

    This document is a subset of the Mojo documentation. Contents Overview Scoped, Typed Handles Message ...

  6. ArrayList的使用方法

    1.什么是ArrayList    ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: 动态的增加和减少元素 实现了ICollection和I ...

  7. Webpack的作用(一个基础的打包编译工具在做什么?)

    结论: 转换ES6语法成ES5 处理模块加载依赖 生成一个可以在浏览器加载执行的 js 文件 第一个问题,转换语法,其实我们可以通过babel来做.核心步骤也就是: 通过babylon生成AST 通过 ...

  8. BZOJ 4472 [Jsoi2015]salesman(树形DP)

    4472: [Jsoi2015]salesman Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 417  Solved: 192[Submit][St ...

  9. CF939F Cutlet (单调队列优化DP)

    题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k&l ...

  10. python学习笔记:第六天

    一.元组(通用格式a=(1,),结束后面加个逗号,不同与数组是中括号,只能是只读的,不能修改,是有序的): 列表之间可以嵌套(列表之间嵌套,嵌套元组,是有序的):a[b[1,2],c[3,4]],输出 ...