紫书 习题 10-3 UVa 1643(计算几何 叉乘)
直观感觉对角线重合的时候面积最大
然后可以根据方程和割补算出阴影部分的面积
注意知道两点坐标,可以求出与原点形成的三角形的面积
用叉乘,叉乘的几何意义以这两个向量为边的平行四边形的面积
所以用叉乘除以2就可以
(x1, y1), (x2, y2),叉乘为x1y2-y1x2
#include<cstdio>
#include<cmath>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
int main()
{
int n;
while(~scanf("%d", &n) && n)
{
double xa, xb, ya, yb, k1, k2;
scanf("%lf%lf%lf%lf", &xa, &ya, &xb, &yb);
k1 = ya / xa, k2 = yb / xb;
if(k1 > k2) swap(k1, k2);
double L = 0, l, sum = 0;
REP(i, 0, n)
{
scanf("%lf", &l);
L += l;
sum += l * l / 2;
}
double x1 = (k1 + 1) / (k2 - k1) * L;
double x2 = (k2 + 1) / (k2 - k1) * L;
double y1 = k1 * x1, y2 = k2 * x2;
printf("%.3lf\n", (x1 * y2 - x2 * y1) / 2 - sum);
}
return 0;
}
紫书 习题 10-3 UVa 1643(计算几何 叉乘)的更多相关文章
- 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)
用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...
- 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)
很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...
- 紫书 习题8-12 UVa 1153(贪心)
本来以为这道题是考不相交区间, 结果还专门复习了一遍前面写的, 然后发现这道题的区间是不是 固定的, 是在一个范围内"滑动的", 只要右端点不超过截止时间就ok. 然后我就先考虑有 ...
- 紫书 习题8-7 UVa 11925(构造法, 不需逆向)
这道题的意思紫书上是错误的-- 难怪一开始我非常奇怪为什么第二个样例输出的是2, 按照紫书上的意思应该是22 然后就不管了,先写, 然后就WA了. 然后看了https://blog.csdn.net/ ...
- 紫书 习题 11-10 UVa 12264 (二分答案+最大流)
书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...
- 紫书 习题7-13 UVa 817(dfs+栈求表达式的值)
题目链接 点击打开链接 这道题分为两个部分, 一用搜索枚举每种可能, 二计算表达式的值, 有挺多细节需要注意 特别注意我的代码中在计算表达式的值中用到了一个!(代码枚举中的!表示不加符号, 我现在说 ...
- 紫书 习题7-8 UVa 12107 (IDA*)
参考了这哥们的博客 https://blog.csdn.net/hyqsblog/article/details/46980287 (1)atoi可以char数组转int, 头文件 cstdlib ...
- 紫书 习题 11-7 UVa 10801 (单源最短路变形)
把每个电梯口看作一个节点, 然后计算边的权值的时候处理一下, 就ok了. #include<cstdio> #include<vector> #include<queue ...
- 紫书 习题 11-17 UVa 1670 (图论构造)
一开始要符合题目条件, 那么肯定没有任何一个点是孤立的, 也就是说没有点的度数是1 所以我就想让度数是1的叶子节点相互连起来.然后WA 然后看这哥们的博客 https://blog.csdn.net/ ...
随机推荐
- javascript对象的相关操作
Window对象 我们知道浏览器对象模型(BOM)是javascript的组成之一,它提供了独立于内容与浏览器窗口进行交互的对象.其分层结构如下: window对象是整个BOM的核心其有documen ...
- NPInter数据集的奇葩标号的出坑秘籍
这篇恐怕是有始以来命名最无奈标题了.需要写一下攻略. 业内人士都熟知NPInter,但是该数据库一直以来访问受限.不过终于能访问得到数据集. 但是蛋疼的是2.0的数据库id的命名方法实在奇葩,想了很多 ...
- JavaScript在不同环境下的全局对象
Node.js 环境下,全局的对象是 global. 浏览器下 window === self 而不是 global,今天才发现的,我惊呆了!
- jquery根据接口返回的值来设置asp:CheckBoxList的选中值
接口返回一个json的值,然后通过jquery来选中asp:CheckBoxList相应选中的值 <asp:CheckBoxList runat="server" Repea ...
- 联想E490 加M.2固态硬盘 卡在第一画面不动解决办法
电脑配置: E490 500G机械硬盘,自己加M.2 NVMe 固态硬盘. 问题:启动时出现 2101:Detection error on SSD1(M.2), 无法识别到机械硬盘 (重新插拨 ...
- [AHOI2013]差异 后缀自动机_Parent树
题中要求: $\sum_{1\leqslant i < j \leq n } Len(T_{i}) +Len(T_{j})-2LCP(T_{i},T_{j})$ 公式左边的部分很好求,是一个常量 ...
- TP5防sql注入、防xss攻击
框架默认没有设置任何过滤规则 可以配置文件中设置全局的过滤规则 config.php 配置选项 default_filter 添加以下代码即可 // 默认全局过滤方法 用逗号分隔多个 'default ...
- luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)
题意 题解 做了这道题,发现扩欧快忘了. 根据题意可以很快地列出线性同余方程. 设跳了k次 x+mkΞy+nk(mod l) (m-n)kΞ-(x-y)(mod l) 然后化一下 (m-n)k+(x- ...
- codevs 1288 埃及分数 (迭代加深搜索)
题目大意:给你一个分数$a/b$,把它拆解成$\sum_{i=1}^{n}1/ai$的形式,必须保证$ai$互不相同的情况下,尽量保证n最小,其次保证分母最大的分数的分母最小 什么鬼玄学题!!! 因为 ...
- sz xshell
yum install lrzsz -y