poj2228 分第一天是否熟睡DP两次

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int n,B,ans,a[],f[][][];
void DP1()
{
int now=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=f[now][][]=;
for(int i=;i<=n;i++)
{
now^=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=;
for(int j=;j<=min(i,B);j++)
{
f[now][j][]=max(f[now^][j][],f[now^][j][]);
f[now][j][]=max(f[now^][j-][],f[now^][j-][]+a[i]);
}
}
ans=max(ans,max(f[now][B][],f[now][B][]));
}
void DP2()
{
int now=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=a[];
for(int i=;i<=n;i++)
{
now^=;
memset(f[now],-,sizeof(f[now]));
for(int j=;j<=min(i,B);j++)
{
f[now][j][]=max(f[now^][j][],f[now^][j][]);
if(j!=)f[now][j][]=max(f[now^][j-][],f[now^][j-][]+a[i]);
}
}
ans=max(ans,f[now][B][]);
} int main()
{
scanf("%d%d",&n,&B);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
ans=;DP1();DP2();
printf("%d\n",ans);
return ;
}

poj2228

环形运输 复制接后头,明显有单调性

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int a[],q[];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(i!=n)a[i+n]=a[i];
} int head=,tail=,mmax=;q[]=;
for(int i=;i<=*n-;i++)
{
while(head<tail&&i-q[head]>n/)head++;
mmax=max(mmax,a[i]+a[q[head]]+i-q[head]);
while(head<=tail&&a[i]>=a[q[tail]]+i-q[tail])tail--;
q[++tail]=i;
}
printf("%d\n",mmax);
return ;
}

环形运输

cf 24D 这是有后效性的题,解个方程咯,这里是两个二元其他三元那就左往右一个个消,实在元素多就gauss咯

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; double a[],b[],f[][];
int main()
{
int n,m,stx,sty;
scanf("%d%d%d%d",&n,&m,&stx,&sty);
if(m==)
{
a[n]=;for(int i=n-;i>=stx;i--)a[i]=a[i+]+;
printf("%.4lf\n",a[stx]);
return ;
}
for(int i=;i<=m;i++)f[n][i]=;
for(int i=n-;i>=stx;i--)
{
a[]=1.0/2.0;
b[]=(f[i+][]+3.0)/2.0;
for(int j=;j<m;j++)
{
a[j]=1.0/(3.0-a[j-]);
b[j]=(f[i+][j]+b[j-]+4.0)/(3.0-a[j-]);
}
f[i][m]=(b[m-]+f[i+][m]+3.0)/(2.0-a[m-]);
for(int j=m-;j>=;j--)f[i][j]=a[j]*f[i][j+]+b[j];
}
printf("%.4lf\n",f[stx][sty]);
return ;
}

cf 24D

0x55 环形与后效性问题的更多相关文章

  1. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  2. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  3. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  4. Codeforces - 24D 有后效性的DP处理

    题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000 lyd告诉我们这种题目要倒推处 ...

  5. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  6. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  7. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  8. Cogs 376. [IOI2002]任务安排(后效性DP)

    [IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...

  9. BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)

    3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 181  Solved: 91[Submit][Status] ...

随机推荐

  1. Spring Boot (5) Spring Boot配置详解

    application.properties application.properties是spring boot默认的配置文件,spring boot默认会在以下两个路径搜索并加载这个文件 src\ ...

  2. [转]深入javascript——构造函数和原型对象

    对象,是javascript中非常重要的一个梗,是否能透彻的理解它直接关系到你对整个javascript体系的基础理解,说白了,javascript就是一群对象在搅..(哔!). 常用的几种对象创建模 ...

  3. bootstrap-paginator基于bootstrap的分页插件

    bootstrap-paginator基于bootstrap的分页插件 GitHub 官网地址:https://github.com/lyonlai/bootstrap-paginator 步骤 引包 ...

  4. 【Oracle】恢复重做日志组

    我们在Oracle的日常运维中,有可能会遇到重做日志组丢失的情况.下面我将模拟丢失不同状态的日志组,并分别给出解决办法: 重做日志有以下几种状态,如下: -  CURRENT:此状态表示正在被 LGW ...

  5. Mysql正则

    摘自:http://www.runoob.com/mysql/mysql-regexp.html 模式 描述 ^ 匹配输入字符串的开始位置.如果设置了 RegExp 对象的 Multiline 属性, ...

  6. BZOJ [Poi2000]病毒 AC自动机_DFS_细节

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  7. 在vue中,让表格td下的textraea自适应高度

    1.效果图 2.数据是动态获取的,因此存在一个异步的问题,解决的思路是数据获取到渲染在textarea中以后,获取文字的真实高度,然后把这个高度给textarea 3.具体代码以及步骤 (1)再cre ...

  8. Full-featured Vue 评分组件

    分享一下最近写的 vue 的评分组件 Features: 支持半星.可清除.文案展示.只读.自定义颜色.自定义字符及图片等.支持 hover 的时候改变 value.内置三种样式,以及非常好看 DEM ...

  9. 1.VMware虚拟机的安装

    1.找到安装软件 2.使用如下操作安装 3.选择接受协议 4.修改安装目录 5.如果上一步有修改,此步骤不用改路径 7.安装后创建桌面快捷方式 8.安装成功可以看到桌面上有快捷方式图标 安装结束 声明 ...

  10. UOJ #131 BZOJ 4199 luogu P2178【NOI2015】品酒大会 (后缀自动机、树形DP)

    水是水,但是写出了不少问题,因此写一发博客. https://www.luogu.org/problemnew/show/P2178 https://www.lydsy.com/JudgeOnline ...