poj2228 分第一天是否熟睡DP两次

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int n,B,ans,a[],f[][][];
void DP1()
{
int now=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=f[now][][]=;
for(int i=;i<=n;i++)
{
now^=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=;
for(int j=;j<=min(i,B);j++)
{
f[now][j][]=max(f[now^][j][],f[now^][j][]);
f[now][j][]=max(f[now^][j-][],f[now^][j-][]+a[i]);
}
}
ans=max(ans,max(f[now][B][],f[now][B][]));
}
void DP2()
{
int now=;
memset(f[now],-,sizeof(f[now]));
f[now][][]=a[];
for(int i=;i<=n;i++)
{
now^=;
memset(f[now],-,sizeof(f[now]));
for(int j=;j<=min(i,B);j++)
{
f[now][j][]=max(f[now^][j][],f[now^][j][]);
if(j!=)f[now][j][]=max(f[now^][j-][],f[now^][j-][]+a[i]);
}
}
ans=max(ans,f[now][B][]);
} int main()
{
scanf("%d%d",&n,&B);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
ans=;DP1();DP2();
printf("%d\n",ans);
return ;
}

poj2228

环形运输 复制接后头,明显有单调性

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int a[],q[];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(i!=n)a[i+n]=a[i];
} int head=,tail=,mmax=;q[]=;
for(int i=;i<=*n-;i++)
{
while(head<tail&&i-q[head]>n/)head++;
mmax=max(mmax,a[i]+a[q[head]]+i-q[head]);
while(head<=tail&&a[i]>=a[q[tail]]+i-q[tail])tail--;
q[++tail]=i;
}
printf("%d\n",mmax);
return ;
}

环形运输

cf 24D 这是有后效性的题,解个方程咯,这里是两个二元其他三元那就左往右一个个消,实在元素多就gauss咯

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; double a[],b[],f[][];
int main()
{
int n,m,stx,sty;
scanf("%d%d%d%d",&n,&m,&stx,&sty);
if(m==)
{
a[n]=;for(int i=n-;i>=stx;i--)a[i]=a[i+]+;
printf("%.4lf\n",a[stx]);
return ;
}
for(int i=;i<=m;i++)f[n][i]=;
for(int i=n-;i>=stx;i--)
{
a[]=1.0/2.0;
b[]=(f[i+][]+3.0)/2.0;
for(int j=;j<m;j++)
{
a[j]=1.0/(3.0-a[j-]);
b[j]=(f[i+][j]+b[j-]+4.0)/(3.0-a[j-]);
}
f[i][m]=(b[m-]+f[i+][m]+3.0)/(2.0-a[m-]);
for(int j=m-;j>=;j--)f[i][j]=a[j]*f[i][j+]+b[j];
}
printf("%.4lf\n",f[stx][sty]);
return ;
}

cf 24D

0x55 环形与后效性问题的更多相关文章

  1. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  2. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  3. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  4. Codeforces - 24D 有后效性的DP处理

    题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000 lyd告诉我们这种题目要倒推处 ...

  5. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  6. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  7. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  8. Cogs 376. [IOI2002]任务安排(后效性DP)

    [IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...

  9. BZOJ3875--骑士游戏(SPFA处理带后效性的动态规划)

    3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 181  Solved: 91[Submit][Status] ...

随机推荐

  1. Java中的synchronized

    学习 https://blog.csdn.net/a158123/article/details/78607964 以及 https://www.cnblogs.com/beiyetengqing/p ...

  2. Redis hash结构 和常用命令

    Redis 数据结构 -- 哈希 hash 是 一个 String 类型的field 和 value 的映射表 hash 的键值 对在内存中的一种无序的状态 命令 说明 备注 hdel key fie ...

  3. 时序分析:ARMA方法(平稳序列)

    憔悴到了转述中文综述的时候了........ 在统计学角度来看,时间序列分析是统计学中的一个重要分支, 是基于随机过程理论和数理统计学的一种重要方法和应用研究领域.  时间序列按其统计特性可分为平稳性 ...

  4. 【sqli-labs】 less24 POST- Second Order Injections *Real treat* -Stored Injections (POST型二阶注入 *真的好玩?* 存储注入)

    简单登陆浏览一遍后,发现是一个登陆注册修改密码的应用 审查一下代码 登陆页面的username,password使用了转义 注册页面的参数也进行了转义处理 但是在修改password的页面,直接从se ...

  5. FormCollection获取请求数据

    public ActionResult Add(FormCollection fm) //通过FormCollection 对象获取表单数据 { string message = "&quo ...

  6. taglib遍历foreach循环list集合

    第一部导入jstl.jar 第二步进行list传输: package com.aaa.servlet; import com.aaa.dao.IUserDAO; import com.aaa.dao. ...

  7. 01 DOS常用命令

    有时候没有可视化窗口,命令行对文件进行操作更方便快捷 cmd 命令弹出 dir 查看当前所在目录下的文件 ctrl+c 退出 \a 显示隐藏文件 cd /改变到根目录 dir /a 显示隐藏文件 di ...

  8. kvm迁移

    一.迁移简介 迁移:      系统的迁移是指把源主机上的操作系统和应用程序移动到目的主机,并且能够在目的主机上正常运行.在没有虚拟机的时代,物理机之间的迁移依靠的是系统备份和恢复技术.在源主机上实时 ...

  9. charles修改下行参数

    1.charles抓包修改下行参数: 想要修改的手机展示展示信息页: 2.charle设置断点,在请求接口上一个上设置断点 菜单proxy->Breadkpoints Settings设置打开断 ...

  10. 【剑指Offer】6、旋转数组的最小数字

      题目描述:   把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5 ...