参考文章:Freak特征提取算法  圆形区域分割

一、Brisk特征的计算过程(参考对比):

1.建立尺度空间:产生8层Octive层。

2.特征点检测:对这8张图进行FAST9-16角点检测,得到具有角点信息的8张图,对原图像img进行一次FAST5-8角点检测(当做d(-1)层,虚拟层),总共会得到9幅有角点信息的图像。

3.非极大值抑制

4.亚像素插值:进过上面步骤,得到了图像特征点的位置和尺度,在极值点所在层及其上下层所对应的位置,对FAST得分值(共3个)进行二维二次函数插值(x、y方向),得到真正意义上的得分极值点及其精确的坐标位置(作为特征点位置);再对尺度方向进行一维插值,得到极值点所对应的尺度(作为特征点尺度)。

5.特征点描述:使用如下图的砖块模式

5.1 通过计算局部梯度来计算主方向

5.2 根据主方向进行旋转,得到,512Bit的二进制编码,也就是64个字节(BRISK64)的Brisk特征。

二、FRESK特征的计算过程

步骤5之处,采样模式发生了变化,如下图:

从图中可以看出,该结构是由很多大小不同并有重叠的圆构成,最中心的点是特征点,其它圆心是采样点,采样点离特征点的距离越远,采样点圆的半径越大,也表示该圆内的高斯函数半径越大。

特点:

由于FREAK描述符自身的圆形对称采样结构使其具有旋转不变性,采样的位置好半径随着尺度的变化使其具有尺度不变性,对每个采样点进行高斯模糊,也具有一定的抗噪性能,像素点的强度对比生成二进制描述子使其具有光照不变性。因此由上述产生的二进制描述子可以用来进行特征匹配。在匹配之前,再补充一下特征点的方向信息。

三、OpenCV使用Freak描述子

参考一个Freak与ORB的对比评测:http://blog.csdn.net/yang_xian521/article/details/7732835

关于主方向的确定和匹配模式,请参考原文:特征检测Freak检测算法

参考资料:FREAK原始论文《FREAK: Fast Retina Keypoint

图像局部显著性—点特征(FREAK)的更多相关文章

  1. 图像局部显著性—点特征(SIFT为例)

    基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. SalientDetection 已经好 ...

  2. 图像局部显著性—点特征(GLOH)

    基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. 相关介绍:局部特征显著性-点特征(SIF ...

  3. 图像局部显著性—点特征(Fast)

    fast作为几乎最快的角点检测算法,一般说明不附带描述子.参考综述:图像的显著性检测--点特征 详细内容,请拜访原=文章:Fast特征点检测算法 在局部特征点检测快速发展的时候,人们对于特征的认识也越 ...

  4. 图像局部显著性—点特征(SURF)

    1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述):参考描述:图像特征点描述. 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文. SURF对SI ...

  5. 图像局部显著性—点特征(SiftGPU)

    SIFT的计算复杂度较高. SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT) 对S ...

  6. 四种简单的图像显著性区域特征提取方法-----AC/HC/LC/FT。

    四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT. 分类: 图像处理 2014-08-03 12:40 4088人阅读 评论(4) 收藏 举报 salient regio ...

  7. 简单的图像显著性区域特征提取方法-----opencv实现LC,AC,FT

    https://blog.csdn.net/cai13160674275/article/details/72991049?locationNum=7&fps=1 四种简单的图像显著性区域特征 ...

  8. 图像特征提取之LBP特征

    LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen ...

  9. 目标检测的图像特征提取之HOG特征

    HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度 ...

随机推荐

  1. noip模拟赛 排序

    分析:因为序列是不严格单调的,所以挪动一个数其实就相当于把这个数给删了.如果a[i] < a[i-1],那么可以删掉a[i],也可以删掉a[i-1](!如果没考虑到这一点就只有90分),删后判断 ...

  2. 如何将变量id添加到jquery的选择器中

    今天在做广州仲裁委员会的系统时这样的一个需求,需要在页面一加载的时候查询各个项目的案件数,这里有很多个项目,一开始我是这样写的: 代码如下: $.get(assignedCaseUrl,functio ...

  3. 【ACM】hdu_1089_A+BI_201307261121

    A+B for Input-Output Practice (I)Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  4. POJ 1190 生日蛋糕 剪枝

    Description 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri ...

  5. UVA 11825 状态压缩DP+子集思想

    很明显的状态压缩思想了.把全集分组,枚举每个集合的子集,看一个子集是否能覆盖所有的点,若能,则f[s]=max(f[s],f[s^s0]+1).即与差集+1比较. 这种枚举集合的思想还是第一次遇到,果 ...

  6. 读写锁(read-write lock)机制-----多线程同步问题的解决

    原文: http://blog.chinaunix.net/uid-27177626-id-3791049.html ----------------------------------------- ...

  7. 搭建strom 的开发环境 - local mode

    Setting Up a Development Environment This page outlines what you need to do to get a Storm developme ...

  8. [Vue] Code split by route in VueJS

    In this lesson I show how to use webpack to code split based on route in VueJS. Code splitting is a ...

  9. java 集合交并补

    通过使用泛型方法和Set来表达数学中的表达式:集合的交并补.在下面三个方法中都将第一个參数Set复制了一份,并未直接改动參数中Set. package Set; import java.util.Ha ...

  10. jQuery总结04

    1 JavaScript 中的 AJAX 的四个实现步骤分别是? 2 如何处理 XMLHttpRequest 对象的兼容问题? 3 jQuery 中的 AJAX 4 jQuery 选择器包括哪些? 5 ...