2017国家集训队作业[agc006e]Rotate 3x3
2017国家集训队作业[agc006e]Rotate 3x3
题意:
给你一个\(3*N\)的网格,每次操作选择一个\(3*3\)的网格,旋转\(180^\circ\)。问可不可以使每个位置\((i,j)\)的数为\(i+3*(j-1)\)。(\(n\leq10^5\))
题解:
因为在操作中,一列的\(3\)个数不可能被打乱,可以预处理判断。我们思考旋转一次造成的影响有什么?记\(f(0/1)、g(0/1)\)分别是一开始奇数位\(/\)偶数位的反列和恢复到原始状态的步数模\(2\)的值。我们可以发现,假设一某个奇数位位中心,进行一次旋转,\(f(1)\)的奇偶性没有变化,而\(f(0)\)的奇偶性改变了。
又因为我们可以构造出(约定\(a\)表示正着的序列\(A\)表示反着的序列):
&a& &b& &c& &d& &e&\\
&C& &B& &A& &d& &e&\\
&C& &B& &E& &D& &a&\\
&e& &b& &c& &D& &a&\\
&e& &b& &A& &d& &C&\\
&a& &B& &E& &d& &C&\\
&a& &B& &c& &D& &e&(1)\\
&a& &d& &C& &b& &e&\\
&c& &D& &A& &b& &e&\\
&c& &B& &a& &d& &e&\\
&A& &b& &C& &d& &e&(2)\\
\end{align*}
\]
构造使得我们可以将任意两个相距为二的数列交换,证明了只要移动后的网格的\(f(0)、f(1)\)奇偶性都为偶的话,存在合法方案。即有\(f(0)=g(1)、f(1)=g(0)\)时存在合法方案。步数什么的树状数组求求逆序对就可以啦。最后才想出来,我真是太弱了= =!。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,l,r) for(int i=l;i<=r;i++)
#define of(i,l,r) for(int i=l;i>=r;i--)
using namespace std;
typedef long long ll;
inline int rd()
{
static int x,f;
x=0,f=1;
char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
const int N=100010;
int n,a[4][N],v[4],f[2],g[2];
int pos[N];
inline bool cmp(int a,int b,int c){return a+1==b&&b+1==c&&c%3==0;}
inline int fabs(int a){return a<0?-a:a;}
namespace TA{
int tr[N<<2];
#define lowbit(x) (x&-x)
inline void insert(int x,int d){for(;x;x-=lowbit(x))tr[x]+=d;}
inline int query(int x){int res=0;for(;x<=n;x+=lowbit(x))res+=tr[x];return res;}
inline void clear(){fo(i,0,n)tr[i]=0;}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
n=rd();
fo(i,0,2)fo(j,1,n)a[i][j]=rd();
fo(i,1,n){
if(!cmp(a[0][i],a[1][i],a[2][i])&&!cmp(a[2][i],a[1][i],a[0][i])){puts("No");return 0;}
int t=a[2][i]>a[0][i]?a[2][i]/3:a[0][i]/3;
if((i-t)&1){puts("No");return 0;}pos[t]=i;
if(a[0][i]>a[2][i])f[i%2]^=1;
}
int sum=0;
for(int i=1;i<=n;i+=2){
int now=pos[i]+(TA::query(pos[i])<<1);
TA::insert(pos[i],1);
// cout<<i<<' '<<now<<endl;
if((fabs(i-now)/2)&1)g[i%2]^=1;
sum+=fabs(i-now)/2;
}
// cout<<sum<<endl;
TA::clear();sum=0;
for(int i=2;i<=n;i+=2){
int now=pos[i]+(TA::query(pos[i])<<1);
TA::insert(pos[i],1);
// cout<<i<<' '<<now<<endl;
if((fabs(i-now)/2)&1)g[i%2]^=1;
sum+=fabs(i-now)/2;
}
// cout<<sum<<endl;
// cout<<f[0]<<' '<<f[1]<<endl;
// cout<<g[0]<<' '<<g[1]<<endl;
if(f[0]==g[1]&&f[1]==g[0])puts("Yes");
else puts("No");
return 0;
}
2017国家集训队作业[agc006e]Rotate 3x3的更多相关文章
- 2017国家集训队作业Atcoder题目试做
2017国家集训队作业Atcoder题目试做 虽然远没有达到这个水平,但是据说Atcoder思维难度大,代码难度小,适合我这种不会打字的选手,所以试着做一做 不知道能做几题啊 在完全自己做出来的题前面 ...
- 2017国家集训队作业[agc016b]Color Hats
2017国家集训队作业[agc016b]Color Hats 题意: 有\(N\)个人,每个人有一顶帽子.帽子有不同的颜色.现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所 ...
- 2017国家集训队作业[agc016e]Poor Turkey
2017国家集训队作业[agc016e]Poor Turkey 题意: 一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i ...
- 2017国家集训队作业[agc006f]Blackout
2017国家集训队作业[agc006f]Blackout 题意: 有一个\(N*N\)的网格,一开始有\(M\)个格子被涂黑,给出这\(M\)个格子,和染色操作:如果有坐标为\((x,y),(y,z) ...
- 2017国家集训队作业[agc004f]Namori
2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...
- 2017国家集训队作业[arc082d]Sandglass
2017国家集训队作业[arc082d]Sandglass 题意: 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间.给出\(K\) ...
- 2017国家集训队作业[arc076d/f][Exhausted?]
2017国家集训队作业[arc076d/f][Exhausted?] 题意: 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim ...
- 2017国家集训队作业[agc014d]Black and White Tree
2017国家集训队作业[agc014d]Black and White Tree 题意: 有一颗n个点的树,刚开始每个点都没有颜色.Alice和Bob会轮流对这棵树的一个点涂色,Alice涂白,B ...
- 2017国家集训队作业[agc008f]Black Radius
2017国家集训队作业[agc008f]Black Radius 时隔4个月,经历了省赛打酱油和中考各种被吊打后,我终于回想起了我博客园的密码= = 题意: 给你一棵树,树上有若干个关键点.选中某 ...
随机推荐
- tomcat web容器工作原理
Tomcat的模块结构设计的相当好,而且其Web 容器的性能相当出色.JBoss直接就使用了Tomcat的web容器,WebLogic的早期版本也是使用了Tomcat的代码.Web容器的工作过程在下面 ...
- vue引入iconfont阿里字体图标库以及报错解决
下载阿里的字体图标库文件,放在\src\assets\font文件夹下面. 安装style-loader,css-loader和file-loader (或url-loader) ,记得--save ...
- keytool常用操作
keytool 秘钥需要存储在秘钥库中,秘钥库可以理解为一个存储了一个或多个秘钥的文件.一个秘钥库可以存储多个密钥对,每个秘钥对你都需要给他们取一个名字. D:\software\Java\jdk1. ...
- Linux 中常用的基础命令一
1.目录相关命令的使用 pwd(printing working directory) 显示当前工作目录 pwd命令相关的环境变量: PWD 保存了当前工作目录路径 OLDP ...
- centeros安装jdk
准备工作: java se下载网址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.ht ...
- Maven学习总结(21)——Maven常用的几个核心概念
在使用Maven的过程中,经常会遇到几个核心的概念,准确的理解这些概念将会有莫大的帮助. 1. POM(Project Object Model)项目对象模型 POM 与 Java 代码实现了解耦,当 ...
- MIBTree
NETWORK-APPLIANCE-MIB http://www.mibdepot.com/cgi-bin/getmib3.cgi?abc=0&n=NETWORK-APPLIANCE-MIB& ...
- COGS——T1310. [HAOI2006]聪明的猴子
http://cogs.pro/cogs/problem/problem.php?pid=1310 ★ 输入文件:monkey.in 输出文件:monkey.out 简单对比时间限制:1 ...
- 介绍静态链接库和动态链接库的差别,及在VC++6.0中的建立和使用
首先介绍一下链接库:链接库分为动态链接库和静态链接库两种 LIB是静态链接库,在程序编译连接的时候是静态链接,其相应的文件格式是.lib. 即当程序採用静态链接库的时候..lib文件里的函数被链接到终 ...
- js插件---图片裁剪cropImgBox(适合练习编写插件之用)
js插件---图片裁剪cropImgBox(适合练习编写插件之用) 一.总结 一句话总结:无论是灰度还是高对比度的图片,都是先处理canvas的像素,使其变成灰度或者高对比度,然后再用canvas.t ...