uva 11992 Fast Matrix Operations 线段树模板
注意 setsetset 和 addvaddvaddv 标记的下传。
我们可以控制懒惰标记的优先级。
由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset 操作时可直接强制清空 addaddadd 的 lazylazylazy。
实际上,当一个节点同时存在 setsetset 和 addaddadd 标记时,一定是先有的 setsetset 再被 addaddadd,因为如果反之,该节点上的 addaddadd标记会被清空。
#include<cstdio> //Fast Matrix Operations
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 200000 + 2;
typedef long long ll;
ll sumv[maxn * 2+1][21];
int minv[maxn * 2+1][21], maxv[maxn * 2+1][21];
int lazy[maxn * 2+1][21], set[maxn * 2+1][21];
int chk;
int _min, _max;
void init(){
memset(sumv, 0, sizeof(sumv));
memset(minv, 0, sizeof(minv));
memset(maxv, 0, sizeof(maxv));
memset(lazy, 0, sizeof(lazy));
memset(set, 0, sizeof(set));
}
void down(int L,int R,int o,int id){
int mid = (L + R) / 2;
if (set[o][id]) {
int k=set[o][id];
set[o * 2][id] = set[o * 2 + 1][id] = k;
sumv[o * 2][id] = (mid - L + 1)*k, sumv[o * 2 + 1][id] = (R - mid)*k; //更新sum
minv[o * 2][id] = maxv[o * 2][id] = minv[o * 2 + 1][id] = maxv[o * 2 + 1][id] = k; //更新minv,maxv
lazy[o * 2][id] = lazy[o * 2 + 1][id] = 0;
set[o][id] = 0;
}
if (lazy[o][id]){
int k = lazy[o][id];
lazy[o * 2][id] += k, lazy[o * 2 + 1][id] += k;
sumv[o * 2][id] += (mid - L + 1)*k, sumv[o * 2 + 1][id] += (R - mid)*k;
minv[o * 2][id] += k, maxv[o * 2][id] += k, minv[o * 2 + 1][id] += k, maxv[o * 2 + 1][id] += k;
lazy[o][id] = 0;
}
}
void update(int l, int r,int k, int o, int id, int L, int R){
if (l <= L&&r >= R){
if (chk == 1)
{
lazy[o][id] += k;
sumv[o][id] += (R - L + 1)*k;
minv[o][id] += k, maxv[o][id] += k;
}
if (chk == 2) {
lazy[o][id] = 0;
sumv[o][id] = (R - L + 1)*k;
minv[o][id] = maxv[o][id] = k;
set[o][id] = k;
}
}
else{
int mid = (L + R) / 2;
down(L,R,o,id);
if (l <= mid)update(l, r, k, o * 2, id, L, mid);
if (r > mid)update(l, r, k, o * 2 + 1, id, mid + 1, R);
minv[o][id] = min(minv[o * 2][id], minv[o * 2 + 1][id]);
maxv[o][id] = max(maxv[o * 2][id], maxv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
}
}
ll query(int l, int r, int o, int id, int L, int R){
if (l <= L&&r >= R) { //包含
_min = min(minv[o][id], _min);
_max = max(maxv[o][id], _max);
return sumv[o][id];
}
else
{
int mid = (L + R) / 2;
ll a = 0;
down(L,R,o,id);
if (l <= mid)a += query(l, r, o * 2, id, L, mid);
if (r > mid)a += query(l, r, o * 2 + 1, id, mid + 1, R);
maxv[o][id] = max(maxv[o * 2][id], maxv[o*2+1][id]);
minv[o][id] = min(minv[o * 2][id],minv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
return a;
}
}
int main(){
int r, c, m;
while (scanf("%d", &r) != EOF)
{
scanf("%d%d",&c, &m);
init();
for (int i = 1; i <= m; ++i)
{
scanf("%d", &chk);
int x1, y1, x2, y2, v;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
if (chk<3)
{
scanf("%d", &v);
for (int j = x1; j <= x2; ++j) update(y1, y2, v, 1, j, 1, c);
}
if (chk == 3)
{
_min = 10000000 + 123, _max = -12345;
ll p=0;
for (int j = x1; j <= x2; ++j)
p += query(y1, y2, 1, j, 1, c);
printf("%lld ", p);
printf("%d %d\n", _min, _max);
}
}
}
return 0;
}
uva 11992 Fast Matrix Operations 线段树模板的更多相关文章
- UVA 11992 - Fast Matrix Operations(段树)
UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...
- UVA 11992 Fast Matrix Operations(线段树:区间修改)
题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...
- 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations
题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...
- UVA 11992 Fast Matrix Operations (二维线段树)
解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...
- UVa 11992 Fast Matrix Operations (线段树,区间修改)
题意:给出一个row*col的全0矩阵,有三种操作 1 x1 y1 x2 y2 v:将x1 <= row <= x2, y1 <= col <= y2里面的点全部增加v: 2 ...
- uva 11992 - Fast Matrix Operations
简单的线段树的题: 有两种方法写这个题,目前用的熟是这种慢点的: 不过不知道怎么老是T: 感觉网上A过的人的时间度都好小,但他们都是用数组实现的 难道是指针比数组慢? 好吧,以后多用数组写写吧! 超时 ...
- UVA 11992 Fast Matrix Operations (降维)
题意:对一个矩阵进行子矩阵操作. 元素最多有1e6个,树套树不好开(我不会),把二维坐标化成一维的,一个子矩阵操作分解成多条线段的操作. 一次操作的复杂度是RlogC,很容易找到极端的数据(OJ上实测 ...
- UVA11992 - Fast Matrix Operations(段树部分的变化)
UVA11992 - Fast Matrix Operations(线段树区间改动) 题目链接 题目大意:给你个r*c的矩阵,初始化为0. 然后给你三种操作: 1 x1, y1, x2, y2, v ...
- 【UVA】11992 - Fast Matrix Operations(段树模板)
主体段树,要注意,因为有set和add操作,当慵懒的标志下推.递归优先set,后复发add,每次运行set行动add马克清0 WA了好几次是由于计算那一段的时候出问题了,可笑的是我对着模板找了一个多小 ...
随机推荐
- 【ZOJ 4062】Plants vs. Zombies
[链接] 我是链接,点我呀:) [题意] [题解] 二分最后的最大抵御值mid. 然后对于每个蘑菇. 都能算出来它要浇水几次mid/ai 然后如果第i个蘑菇没浇水达到要求次数. 就在i和i+1之间来回 ...
- WordPress TinyMCE 编辑器增强技巧大全
说到WordPress自带的TinyMCE 编辑器,有些国人总是不太满意.针对这个情况,倡萌已经介绍了一些增强或替代的方法: WordPress编辑器增强插件:TinyMCE Advanced Wor ...
- spring-boot-starter-actuator监控接口详解
spring-boot-starter-actuator 是什么 一句话,actuator是监控系统健康情况的工具. - 怎么用? 1. 添加 POM依赖 <dependency> < ...
- Ubuntu下ss的安装与使用
不得不说,linux真的有种让人用上就爱上的魔力,正好最近Ubuntu出了16.04,便索性装了个win10+Ubuntu的双系统,也算是告慰那永远留在老硬盘里的虚拟机吧. 言归正传,换上Ubuntu ...
- POJ 1106
先判断是否在圆内,然后用叉积判断是否在180度内.枚举判断就可以了... 感觉是数据弱了.. #include <iostream> #include <cstdio> #in ...
- STM32F4——GPIO基本应用及复用
IO基本应用 一.IO基本结构: 针对STM32F407有7组IO.分别为GPIOA~GPIOG,每组IO有16个IO口,则有112个IO口. 当中IO口的基本结构例如以下: 二.工作方式: ST ...
- java 命令行 编译 运行程序
学习java使用IDE前最好先用用命令行的javac.java来跑一跑简单的程序,这样能够熟悉一下包管理对.class文件路径的影响. 我们先写一段简单的代码: package com.csdn.lk ...
- Ubuntu使用ssh方法连接不上
查看远程机器是否安装ssh服务(ubuntu 没有默认安装ssh) 命令:ssh host (图中没有安装) 安装ssh 命令 sudo apt-get install openssh-serve ...
- Linux - 网络相关指令
系统时间与开关机 查看系统时间 date 查看硬件日期 hwclock 学习Linux不必全部指令都会,只要记住主要常用的几个就可以了.--MK 关机命令 shutdown init reboot p ...
- 循环神经网络(RNN, Recurrent Neural Networks)——无非引入了环,解决时间序列问题
摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251 不同于传统的FNNs(Feed-forward Neural Networ ...