注意 setsetset 和 addvaddvaddv 标记的下传。

我们可以控制懒惰标记的优先级。

由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset 操作时可直接强制清空 addaddadd 的 lazylazylazy。

实际上,当一个节点同时存在 setsetset 和 addaddadd 标记时,一定是先有的 setsetset 再被 addaddadd,因为如果反之,该节点上的 addaddadd标记会被清空。

#include<cstdio>                //Fast Matrix Operations
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 200000 + 2;
typedef long long ll;
ll sumv[maxn * 2+1][21];
int minv[maxn * 2+1][21], maxv[maxn * 2+1][21];
int lazy[maxn * 2+1][21], set[maxn * 2+1][21];
int chk;
int _min, _max;
void init(){
memset(sumv, 0, sizeof(sumv));
memset(minv, 0, sizeof(minv));
memset(maxv, 0, sizeof(maxv));
memset(lazy, 0, sizeof(lazy));
memset(set, 0, sizeof(set));
}
void down(int L,int R,int o,int id){
int mid = (L + R) / 2;
if (set[o][id]) {
int k=set[o][id];
set[o * 2][id] = set[o * 2 + 1][id] = k;
sumv[o * 2][id] = (mid - L + 1)*k, sumv[o * 2 + 1][id] = (R - mid)*k; //更新sum
minv[o * 2][id] = maxv[o * 2][id] = minv[o * 2 + 1][id] = maxv[o * 2 + 1][id] = k; //更新minv,maxv
lazy[o * 2][id] = lazy[o * 2 + 1][id] = 0;
set[o][id] = 0;
}
if (lazy[o][id]){
int k = lazy[o][id];
lazy[o * 2][id] += k, lazy[o * 2 + 1][id] += k;
sumv[o * 2][id] += (mid - L + 1)*k, sumv[o * 2 + 1][id] += (R - mid)*k;
minv[o * 2][id] += k, maxv[o * 2][id] += k, minv[o * 2 + 1][id] += k, maxv[o * 2 + 1][id] += k;
lazy[o][id] = 0;
}
}
void update(int l, int r,int k, int o, int id, int L, int R){
if (l <= L&&r >= R){
if (chk == 1)
{
lazy[o][id] += k;
sumv[o][id] += (R - L + 1)*k;
minv[o][id] += k, maxv[o][id] += k;
}
if (chk == 2) {
lazy[o][id] = 0;
sumv[o][id] = (R - L + 1)*k;
minv[o][id] = maxv[o][id] = k;
set[o][id] = k;
}
}
else{
int mid = (L + R) / 2;
down(L,R,o,id);
if (l <= mid)update(l, r, k, o * 2, id, L, mid);
if (r > mid)update(l, r, k, o * 2 + 1, id, mid + 1, R);
minv[o][id] = min(minv[o * 2][id], minv[o * 2 + 1][id]);
maxv[o][id] = max(maxv[o * 2][id], maxv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
}
}
ll query(int l, int r, int o, int id, int L, int R){
if (l <= L&&r >= R) { //包含
_min = min(minv[o][id], _min);
_max = max(maxv[o][id], _max);
return sumv[o][id];
}
else
{
int mid = (L + R) / 2;
ll a = 0;
down(L,R,o,id);
if (l <= mid)a += query(l, r, o * 2, id, L, mid);
if (r > mid)a += query(l, r, o * 2 + 1, id, mid + 1, R);
maxv[o][id] = max(maxv[o * 2][id], maxv[o*2+1][id]);
minv[o][id] = min(minv[o * 2][id],minv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
return a;
}
}
int main(){
int r, c, m;
while (scanf("%d", &r) != EOF)
{
scanf("%d%d",&c, &m);
init();
for (int i = 1; i <= m; ++i)
{
scanf("%d", &chk);
int x1, y1, x2, y2, v;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
if (chk<3)
{
scanf("%d", &v);
for (int j = x1; j <= x2; ++j) update(y1, y2, v, 1, j, 1, c);
}
if (chk == 3)
{
_min = 10000000 + 123, _max = -12345;
ll p=0;
for (int j = x1; j <= x2; ++j)
p += query(y1, y2, 1, j, 1, c);
printf("%lld ", p);
printf("%d %d\n", _min, _max);
}
}
}
return 0;
}

uva 11992 Fast Matrix Operations 线段树模板的更多相关文章

  1. UVA 11992 - Fast Matrix Operations(段树)

    UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...

  2. UVA 11992 Fast Matrix Operations(线段树:区间修改)

    题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...

  3. 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations

    题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...

  4. UVA 11992 Fast Matrix Operations (二维线段树)

    解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...

  5. UVa 11992 Fast Matrix Operations (线段树,区间修改)

    题意:给出一个row*col的全0矩阵,有三种操作 1 x1 y1 x2 y2 v:将x1 <= row <= x2, y1 <= col <= y2里面的点全部增加v: 2 ...

  6. uva 11992 - Fast Matrix Operations

    简单的线段树的题: 有两种方法写这个题,目前用的熟是这种慢点的: 不过不知道怎么老是T: 感觉网上A过的人的时间度都好小,但他们都是用数组实现的 难道是指针比数组慢? 好吧,以后多用数组写写吧! 超时 ...

  7. UVA 11992 Fast Matrix Operations (降维)

    题意:对一个矩阵进行子矩阵操作. 元素最多有1e6个,树套树不好开(我不会),把二维坐标化成一维的,一个子矩阵操作分解成多条线段的操作. 一次操作的复杂度是RlogC,很容易找到极端的数据(OJ上实测 ...

  8. UVA11992 - Fast Matrix Operations(段树部分的变化)

    UVA11992 - Fast Matrix Operations(线段树区间改动) 题目链接 题目大意:给你个r*c的矩阵,初始化为0. 然后给你三种操作: 1 x1, y1, x2, y2, v ...

  9. 【UVA】11992 - Fast Matrix Operations(段树模板)

    主体段树,要注意,因为有set和add操作,当慵懒的标志下推.递归优先set,后复发add,每次运行set行动add马克清0 WA了好几次是由于计算那一段的时候出问题了,可笑的是我对着模板找了一个多小 ...

随机推荐

  1. JavaSE 学习笔记之继承(五)

    继 承(面向对象特征之一) 好处: 1:提高了代码的复用性. 2:让类与类之间产生了关系,提供了另一个特征多态的前提. 父类的由来:其实是由多个类不断向上抽取共性内容而来的. java中对于继承,ja ...

  2. Office办公软件各版本下载(一键安装)

    史上最快最全的Office套件,含Word.PPT.Excel.Access.Outlook完整组件(微软官方版本). 推荐安装Office2010版本!一键完成清理.安装Office.自动激活. 图 ...

  3. orcale 日期显示格式化

    SQL> select * 2 from emp 3 where hiredate='1987-11-17'; where hiredate='1987-11-17' * 第 3 行出现错误: ...

  4. 修改Xorg.conf配置显示分辨率

    修改Xorg.conf是件简单的事,配置文件结构简单,也没有复杂的语法,但是一但配置失败,后果是比较 严重的,,所以强烈建议每次修改之前做好备份工作. Xorg.conf一般位于/etc/X11/xo ...

  5. asp.net--常用的数据库链接字符串

    本地连接 privatestring conn_string ="Data Source=localhost;Initial Catalog=SQLtest;Integrated Secur ...

  6. hadoop-2.6.0集群开发环境配置

    hadoop-2.6.0集群开发环境配置 一.环境说明 1.1安装环境说明 本例中,操作系统为CentOS 6.6, JDK版本号为JDK 1.7,Hadoop版本号为Apache Hadoop 2. ...

  7. 安装10gR2的硬件要求

    1.至少1G的RAM. 2.RAM与swap关系: RAM                    swap 512M以上           2*RAM   (非常奇怪.至少1G的RAM.还写512的 ...

  8. Chrome(谷歌浏览器) 程序开发32个经常使用插件

    Chrome(谷歌浏览器) 程序开发32个经常使用插件                   谷歌浏览器(Chrome)在2008年底才公布.但非常快它已成为火狐(Firefox)有力竞争对手. 之前. ...

  9. QUERY_REWRITE_INTEGRITY

    QUERY_REWRITE_INTEGRITY Property Description Parameter type String Syntax QUERY_REWRITE_INTEGRITY = ...

  10. Leetcode 贪心 Best Time to Buy and Sell Stock

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie Best Time to Buy and Sell Stock Total Accepted ...