【问题描述】

求关于 x 的同余方程组

x%a 1 =b 1  a1=b1

x%a 2 =b 2  a2=b2

x%a 3 =b 3  a3=b3

x%a 4 =b 4  a4=b4

的大于等于 0 的最小整数解。

【输入格式】

一行 8 个整数,表示a 1 ,b 1 ,a 2 ,b 2 ,a 3 ,b 3 ,a 4 ,b 4  a1,b1,a2,b2,a3,b3,a4,b4 。

【输出格式】

一行一个整数,答案除以 p 的余数。

【样例输入】

2 0 3 1 5 0 7 3

【样例输出】

10

【数据规模和约定】

对于 30% 的数据,a i  ai ≤ 40, 保证 a i  ai 均为素数。

对于 60% 的数据,1≤a i ≤10 3  1≤ai≤103 , 保证a i  ai 均互素。

对于 100% 的数据,0≤b i <a i ,1≤a i ≤10 3  0≤bi<ai,1≤ai≤103 。

【限制】

时间:1S

内存: 256M

/**********************一般模线性方程组***********************/

同样是求这个东西。。
X mod m1=r1
X mod m2=r2
...
...
...
X mod mn=rn

首先,我们看两个式子的情况
X mod m1=r1……………………………………………………………(1)
X mod m2=r2……………………………………………………………(2)
则有 
X=m1*k1+r1………………………………………………………………(*)
X=m2*k2+r2
那么 m1*k1+r1=m2*k2+r2
整理,得
m1*k1-m2*k2=r2-r1
令(a,b,x,y,m)=(m1,m2,k1,k2,r2-r1),原式变成
ax+by=m
熟悉吧?

此时,因为GCD(a,b)=1不一定成立,GCD(a,b) | m 也就不一定成立。所以应该先判 若 GCD(a,b) | m 不成立,则!!!方程无解!!!。
否则,继续往下。

解出(x,y),将k1=x反代回(*),得到X。
于是X就是这两个方程的一个特解,通解就是 X'=X+k*LCM(m1,m2)
这个式子再一变形,得 X' mod LCM(m1,m2)=X
这个方程一出来,说明我们实现了(1)(2)两个方程的合并。
令 M=LCM(m1,m2),R=r2-r1
就可将合并后的方程记为 X mod M = R。

然后,扩展到n个方程。
用合并后的方程再来和其他的方程按这样的方式进行合并,最后就能只剩下一个方程 X mod M=R,其中 M=LCM(m1,m2,...,mn)。
那么,X便是原模线性方程组的一个特解,通解为 X'=X+k*M。

如果,要得到X的最小正整数解,就还是原来那个方法:

X%=M;
if (X<0) X+=M;

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int MAXN=;
const int n=;
inline void read(int &n)
{
char c=getchar();bool flag=;n=;
while(c<''||c>'') c=='-'?flag=,c=getchar():c=getchar();
while(c>=''&&c<='') n=n*+c-,c=getchar();flag==?n=-n:n=n;
}
int a[MAXN],b[MAXN];
int exgcd(int a,int b,int &x,int &y)
{
if(b==)
{ x=,y=;return a; }
int r=exgcd(b,a%b,x,y);
int tmp=x;x=y;y=tmp-(a/b)*y;
return r;
}
int x,y;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int lcm(int a,int b)
{
return a*b/(gcd(a,b));
}
inline int WORK()
{
/*
x+a1*y1=b1 1
x+a2*y2=b2 2
x+a3*y3=b3 3
求这个方程的解x
*/
int M=a[],R=b[],x,y;
// M=LCM(a1,a2)
// R=bi-b1
for(int i=;i<=n;i++)
{ /*
a1*y1-a2*y2=b2-b1
a*x +b*y =gcd(a,b)
这样求出y1之后
带回得到对于1,2两个方程的解x0=b1-y1*a1
*/
int r=exgcd(M,a[i],x,y);
if( (R-b[i])%r!=) return -;
/* R-b[i]相当于b2-b1
方程有解的条件(b2-b1)%gcd(a,b) ==0 */ x=(R-b[i])/r*x%a[i];//**** R=R-x*M;//x0=b1-y1*a1
M=M/r*a[i];// 新的模数
R=R%M;//R=X mod M
}
return (R%M+M)%M;
}
int main()
{ for(int i=;i<=n;i++)
read(a[i]),read(b[i]);
printf("%d",WORK());
return ;
}

线性同余同余方程组解法(excrt)的更多相关文章

  1. 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组

    http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...

  2. 【poj2891】同余方程组

    同余方程组 例题1:pku2891Strange Way to Express Integers 中国剩余定理求的同余方程组mod 的数是两两互素的.然而本题(一般情况,也包括两两互素的情况,所以中国 ...

  3. poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组

    怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...

  4. hdu1573:数论,线性同余方程组

    题目大意: 给定一个N ,m 找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都 ...

  5. HDU 3579 线性同余方程组

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  6. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  7. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  8. 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...

  9. 【hdu1573-X问题】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X  ...

随机推荐

  1. scrapy爬取boss直聘实习生数据

    这个..是我最近想找实习单位..结果发现boss上很多实习单位名字就叫‘实习生’.......太不讲究了 == 难怪一直搜不到..咳,其实是我自己水平有限,有些简历根本就投不出去 == 所以就想爬下b ...

  2. TODOList 多线程交互、RCP、事物控制、数据倾斜、HBase数据同步性

    TODOList 多线程交互.RCP.事物控制.数据倾斜.HBase数据同步性 TODO List thread.join()如何互相之间通知? 线程池何时最后运行完成? MemCache性能要优于R ...

  3. Oracle rownum影响运行计划

    今天调优一条SQL语句,因为SQL比較复杂,用autotrace非常难一眼看出哪里出了问题,直接上10046. SELECT AB.* FROM (SELECT A.*, rownum RN FROM ...

  4. 利用 border 实现的图片选区效果,只需一层图一蒙层

    <html> <style> #p { background: url("http://soso5.gtimg.cn/sosopic_j/0/436416703332 ...

  5. input range 模拟滑块

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  6. hdu_1166,线段树单点更新

    在刷线段树,参考自http://www.notonlysuccess.com/index.php/segment-tree-complete/ #include<iostream> #in ...

  7. Codeforces 667C Reberland Linguistics 记忆化搜索

    链接 Codeforces 667C Reberland Linguistics 题意 给你一个字符串,除去前5个字符串后,使剩下的串有长度为2或3的词根组成,相邻的词根不能重复.找到所有的词根 思路 ...

  8. 我照着NancyFx官网的demo来做为什么会有错误呢????

    我照着NancyFx官网的demo来做为什么会有错误呢???? >> csharp这个答案描述的挺清楚的:http://www.goodpm.net/postreply/csharp/10 ...

  9. 《剑指offer》变态跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...

  10. HTTP状态码:300\400\500 错误代码

    一些常见的状态码为: 200 - 服务器成功返回网页 404 - 请求的网页不存在 503 - 服务不可用 详细分解: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 ...