题意:





思路:

dp[i][j] 表示前i + 1个数变成单调且最后一个数是B[j],此时的最小成本

dp[i][j] = min(dp[i – 1][k]) + |A[i] – B[j]| 【k = 0->j】

但是我们发现现在的复杂度是O(n^3) 卡不过去

怎么优化呢

保存个最小值不就行了嘛….复杂度O(n^2)

Ps:这道题可以优化空间…

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 2222
int n,a[N],b[N],c[N],f[N][N],ans=0x7fffffff;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+1,b+1+n);
for(int i=1;i<=n;i++)c[i]=lower_bound(b+1,b+1+n,a[i])-b;
memset(f,0x7f,sizeof(f));
for(int i=1;i<=n;i++)f[0][i]=0;
for(int i=1;i<=n;i++){
int minn=0x7fffffff;
for(int j=1;j<=n;j++){
minn=min(minn,f[i-1][j]);
f[i][j]=minn+abs(b[j]-b[c[i]]);
}
}
for(int i=1;i<=n;i++)ans=min(ans,f[n][i]);
printf("%d\n",ans);
}

优化空间的版本~

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 2222
int n,a[N],b[N],c[N],f[2][N],ans=0x7fffffff;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+1,b+1+n);
for(int i=1;i<=n;i++)c[i]=lower_bound(b+1,b+1+n,a[i])-b;
memset(f,0x7f,sizeof(f));
for(int i=1;i<=n;i++)f[0][i]=0;
for(int i=1;i<=n;i++){
int minn=0x7fffffff;
for(int j=1;j<=n;j++){
minn=min(minn,f[(i+1)%2][j]);
f[i%2][j]=minn+abs(b[j]-b[c[i]]);
}
}
for(int i=1;i<=n;i++)ans=min(ans,f[n%2][i]);
printf("%d\n",ans);
}

POJ 3666 DP的更多相关文章

  1. 把一个序列转换成非严格递增序列的最小花费 POJ 3666

    //把一个序列转换成非严格递增序列的最小花费 POJ 3666 //dp[i][j]:把第i个数转成第j小的数,最小花费 #include <iostream> #include < ...

  2. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  3. S - Making the Grade POJ - 3666 结论 将严格递减转化成非严格的

    S - Making the Grade POJ - 3666 这个题目要求把一个给定的序列变成递增或者递减序列的最小代价. 这个是一个dp,对于这个dp的定义我觉得不是很好想,如果第一次碰到的话. ...

  4. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  5. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  6. POJ 3666 Making the Grade(二维DP)

    题目链接:http://poj.org/problem?id=3666 题目大意:给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调不降或者单调不增(题目BUG,只能求 ...

  7. POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)

    传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. DP:Making the Grade(POJ 3666)

     聪明的修路方案 题目大意:就是农夫要修一条路,现在要求这条路要么就是上升的,要么就是下降的,总代价为∑|a[i]-b[i]|,求代价最低的修路方案, (0 ≤ β≤ 1,000,000,000) , ...

  9. POJ 3666 Making the Grade (DP)

    题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ...

随机推荐

  1. CentOS6.3升级GCC到GCC4.8.2

    server上安装的GCC版本号过旧.已经不满足个人使用的版本号需求,故决定对其进行升级操作.由当前版本号3.4.6升级到4.8.2.然受权限制约.仅仅能安装到个人文件夹.因此假设您的server能够 ...

  2. Android开发之AudioManager(音频管理器)具体解释

    AudioManager简单介绍: AudioManager类提供了訪问音量和振铃器mode控制. 使用Context.getSystemService(Context.AUDIO_SERVICE)来 ...

  3. the process android.process.acore has stopped或the process com.phone。。。。

    模拟器一启动 The process android.process.acore has stopped unexpectedly 今天不知道怎么回事,模拟器一启动就狂报错, 模拟器已经重新安装过了, ...

  4. 什么是域名的TTL值? ——一条域名解析记录在DNS缓存服务器中的存留时间

    什么是域名的TTL值? 转自:http://hizip.net/index.php/archives/20/TTL(Time-To-Live),就是一条域名解析记录在DNS服务器中的存留时间.当各地的 ...

  5. [雅礼NOIP2018集训 day3]

    考试的时候刚了T1两个小时线段树写了三个子任务结果发现看错了题目,于是接下来一个半小时我自闭了 result=历史新低 这告诉我们,打暴力要端正态度,尤其是在发现自己之前出锅的情况下要保持心态的平和, ...

  6. C#各个版本中的新增特性详解【转】

    序言 自从2000年初期发布以来,c#编程语言不断的得到改进,使我们能够更加清晰的编写代码,也更加容易维护我们的代码,增强的功能已经从1.0搞到啦7.0甚至7.1,每一次改过都伴随着.NET Fram ...

  7. C# treeview绑定

    protected void Page_Load(object sender, EventArgs e)        {            if (!IsPostBack)            ...

  8. tinymce原装插件源码分析(六)-preview

    priview 此插件文件结构比较简单,按钮注册.editor.windowManager.open.窗口出现之前的渲染数据的准备.页面代码的准备. 注意: 1.preview的默认宽高设置: 2.c ...

  9. EasyUI Combotree只选择叶子节点

    EasyUI Combotree的方法拓展自Combo和Tree.而Tree有一个onBeforSelect事件来帮助我们实现只选择叶子节点的功能. Tree事件需要 'node' 参数,它包括下列属 ...

  10. 洛谷3627 [APIO2009]抢掠计划

    题目描述 输入格式: 第一行包含两个整数 N.M.N 表示路口的个数,M 表示道路条数.接下来 M 行,每行两个整数,这两个整数都在 1 到 N 之间,第 i+1 行的两个整数表示第 i 条道路的起点 ...