poj--3678--Katu Puzzle(2-sat 建模)
| Time Limit: 1000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge
e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer
c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex
Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge
e(a, b) labeled by op and c, the following formula holds:
XaopXb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and
M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a <
N), b(0 ≤ b < N), c and an operator
op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR
Sample Output
YES
Hint
X2 = 0, X3 = 1.
#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 1000000+10
int low[MAX],dfn[MAX];
int sccno[MAX],m,n;
int scc_cnt,dfs_clock;
bool Instack[MAX];
vector<int>G[MAX];
stack<int>s;
void init()
{
for(int i=0;i<2*n;i++)
G[i].clear();
}
void getmap()
{
while(m--)
{
int a,b,c;
char op[5];
memset(op,'\0',sizeof(op));
scanf("%d%d%d%s",&a,&b,&c,op);
if(op[0]=='A')
{
if(c==1)
{
G[a+n].push_back(a);
G[b+n].push_back(b);
}
else
{
G[a].push_back(b+n);
G[b].push_back(a+n);
}
}
else if(op[0]=='O')
{
if(c==1)
{
G[a+n].push_back(b);
G[b+n].push_back(a);
}
else
{
G[a].push_back(a+n);
G[b].push_back(b+n);
}
}
else if(op[0]=='X')
{
if(c==1)
{
G[a+n].push_back(b);
G[b+n].push_back(a);
G[a].push_back(b+n);
G[b].push_back(a+n);
}
else
{
G[a].push_back(b);
G[b].push_back(a);
G[a+n].push_back(b+n);
G[b+n].push_back(a+n);
}
}
}
}
void tarjan(int u,int fa)
{
int v;
low[u]=dfn[u]=++dfs_clock;
Instack[u]=true;
s.push(u);
for(int i=0;i<G[u].size();i++)
{
v=G[u][i];
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[v],low[u]);
}
else if(Instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++scc_cnt;
for(;;)
{
v=s.top();
s.pop();
Instack[v]=false;
sccno[v]=scc_cnt;
if(v==u) break;
}
}
}
void find(int l,int r)
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(sccno,0,sizeof(sccno));
memset(Instack,false,sizeof(Instack));
scc_cnt=dfs_clock=0;
for(int i=l;i<=r;i++)
if(!dfn[i]) tarjan(i,-1);
}
void solve()
{
for(int i=0;i<n;i++)
{
if(sccno[i]==sccno[i+n])
{
printf("NO\n");
return ;
}
}
printf("YES\n");
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
find(0,2*n-1);
solve();
}
return 0;
}
poj--3678--Katu Puzzle(2-sat 建模)的更多相关文章
- poj 3678 Katu Puzzle(Two Sat)
题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9987 Accepted: 3741 Descr ...
- poj 3678 Katu Puzzle(2-sat)
Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...
- POJ 3678 Katu Puzzle (经典2-Sat)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6553 Accepted: 2401 Descr ...
- POJ 3678 Katu Puzzle (2-SAT)
Katu Puzzle Time Limit: 1000MS ...
- poj 3678 Katu Puzzle 2-SAT 建图入门
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan
http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...
- POJ 3678 Katu Puzzle
Description 给出一个关系,包括 And,Xor,Or 问是否存在解. Sol 经典的2-SAT问题. 把每个值看成两个点,一个点代表选 \(0\) ,另一个代表选 \(1\) . 首先来看 ...
- POJ 3678 Katu Puzzle(强连通 法)
题目链接 题意:给出a, b, c 和操作类型 (与或异或),问是否满足所有的式子 主要是建图: 对于 and , c == 1: 说明 a 和 b都是1,那么 0 就不能取, a' -> a ...
随机推荐
- 初探.net framework 下的异步多线程
初探.net framework 下的异步多线程 目录 1.多线程的出现条件 2.Thread和ThreadPool的相关Api及用法 3.Task和Parallel的相关Api及用法 4.Async ...
- WinForm上传文件,下载文件
上传文件: 使用OpenFileDialog控件选择文件, 具体代码示例: private void btnUpLoadPic_Click(object sender, EventArgs e) { ...
- [Offer收割]编程练习赛41
比赛日程安排 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> #incl ...
- [Offer收割]编程练习赛36
逃离单身节 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<vector&g ...
- C# 2.0新加特性
泛型(Generics) 泛型是CLR 2.0中引入的最重要的新特性,使得可以在类.方法中对使用的类型进行参数化. 例如,这里定义了一个泛型类: class MyCollection<T> ...
- 提示“CD/DVD找不到媒体所需的驱动”
最近在帮我姐安装win7系统时提 示“CD/DVD找不到媒体所需的驱动”,我用的是U盘安装方式,觉得奇怪,那个镜像文件我已经安装过几十次都没有出错,显然是不会有错的.但是新买的电 脑又不会太大的问题, ...
- 工欲善其事必先利其器之windows篇
Windows是我们最常用的系统,下面就让我们重新认识一下Windows有哪些可以让我们提高工作效率的快捷键以及部分技巧,,以及在外行看来可以看起来逼格高的技巧! 1.Windows最实用,最常用的快 ...
- 【转】【Oracle 集群】Oracle 11G RAC教程之集群安装(七)
原文地址:http://www.cnblogs.com/baiboy/p/orc7.html 阅读目录 目录 集群安装 参考文献 相关文章 Oracle 11G RAC集群安装(七) 概述:写下本文档 ...
- 移动前端头部标签(HTML5 head meta)转载
移动web页面头部书写 字数2516 阅读1128 评论0 喜欢30 HTTP 标题信息(http-equiv) 和页面描述信息(name) http-equiv:该枚举的属性定义,可以改变服务器和用 ...
- JS 九九运算表
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...