类似于树的直径,从随意一个点出发,找到距离该点最远的且度数最少的点.

然后再做一次最短路

Friend Chains

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 4227    Accepted Submission(s): 1359

Problem Description
For a group of people, there is an idea that everyone is equals to or less than 6 steps away from any other person in the group, by way of introduction. So that a chain of "a friend of a friend" can be made to connect any 2 persons and it contains no more than
7 persons.

For example, if XXX is YYY’s friend and YYY is ZZZ’s friend, but XXX is not ZZZ's friend, then there is a friend chain of length 2 between XXX and ZZZ. The length of a friend chain is one less than the number of persons in the chain.

Note that if XXX is YYY’s friend, then YYY is XXX’s friend. Give the group of people and the friend relationship between them. You want to know the minimum value k, which for any two persons in the group, there is a friend chain connecting them and the chain's
length is no more than k .
 
Input
There are multiple cases. 

For each case, there is an integer N (2<= N <= 1000) which represents the number of people in the group. 

Each of the next N lines contains a string which represents the name of one people. The string consists of alphabet letters and the length of it is no more than 10. 

Then there is a number M (0<= M <= 10000) which represents the number of friend relationships in the group. 

Each of the next M lines contains two names which are separated by a space ,and they are friends. 

Input ends with N = 0.
 
Output
For each case, print the minimum value k in one line. 

If the value of k is infinite, then print -1 instead.
 
Sample Input
3
XXX
YYY
ZZZ
2
XXX YYY
YYY ZZZ
0
 
Sample Output
2
 
Source
 

/* ***********************************************
Author :CKboss
Created Time :2015年08月17日 星期一 16时35分00秒
File Name :HDOJ4460.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; const int INF=0x3f3f3f3f;
const int maxn=2100; int n,m;
int id=1;
map<string,int> msi; int getID(string name)
{
if(msi[name]==0) msi[name]=id++;
return msi[name];
} struct Edge
{
int to,next,cost;
}edge[maxn*maxn]; int Adj[maxn],Size;
int du[maxn]; void init()
{
id=1; msi.clear();
memset(du,0,sizeof(du));
memset(Adj,-1,sizeof(Adj)); Size=0;
} void Add_Edge(int u,int v)
{
edge[Size].to=v;
edge[Size].cost=1;
edge[Size].next=Adj[u];
Adj[u]=Size++;
} int dist[maxn],cq[maxn];
bool inq[maxn]; bool spfa(int st)
{
memset(dist,63,sizeof(dist));
memset(cq,0,sizeof(cq));
memset(inq,false,sizeof(inq));
dist[st]=0;
queue<int> q;
inq[st]=true;q.push(st); cq[st]=1; while(!q.empty())
{
int u=q.front();q.pop(); for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].cost)
{
dist[v]=dist[u]+edge[i].cost;
if(!inq[v])
{
inq[v]=true;
cq[v]++;
if(cq[v]>=n+10) return false;
q.push(v);
}
}
}
inq[u]=false;
}
return true;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); while(scanf("%d",&n)!=EOF&&n)
{
init();
string name1,name2;
for(int i=1;i<=n;i++)
{
cin>>name1;
}
scanf("%d",&m);
for(int i=0;i<m;i++)
{
cin>>name1>>name2;
int id1=getID(name1);
int id2=getID(name2);
Add_Edge(id1,id2); Add_Edge(id2,id1);
du[id1]++; du[id2]++;
}
spfa(1);
int st=1;
for(int i=2;i<=n;i++)
{
if(dist[st]<dist[i]) st=i;
else if(dist[st]==dist[i])
{
if(du[st]>du[i]) st=i;
}
}
spfa(st);
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dist[i]);
if(ans==INF) ans=-1;
cout<<ans<<endl;
} return 0;
}

HDOJ 4460 Friend Chains 图的最长路的更多相关文章

  1. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  2. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  3. hdu 1534(差分约束+spfa求最长路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1534 思路:设s[i]表示工作i的开始时间,v[i]表示需要工作的时间,则完成时间为s[i]+v[i] ...

  4. POJ3592 Instantaneous Transference 强连通+最长路

    题目链接: id=3592">poj3592 题意: 给出一幅n X m的二维地图,每一个格子可能是矿区,障碍,或者传送点 用不同的字符表示: 有一辆矿车从地图的左上角(0,0)出发, ...

  5. Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)

    参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...

  6. HDU4514(非连通图的环判断与图中最长链)

    题目:设计风景线 题意:给定一个无向图,图可能是非连通的,如果图中存在环,就输出YES,否则就输出图中最长链的长度. 分析:首先我们得考虑这是一个无向图,而且有可能是非连通的,那么就不能直接像求树那样 ...

  7. [USACO15JAN]草鉴定Grass Cownoisseur (分层图,最长路,$Tarjan$)

    题目链接 Solution 水水的套路题. 可以考虑到一个环内的点是可以都到达的,所以 \(tajan\) 求出一个 \(DAG\) . 然后 \(DAG\) 上的点权值就是 \(scc\) 的大小. ...

  8. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

  9. POJ 3592--Instantaneous Transference【SCC缩点新建图 &amp;&amp; SPFA求最长路 &amp;&amp; 经典】

    Instantaneous Transference Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6177   Accep ...

随机推荐

  1. delphi网络函数大全

    {=========================================================================功 能: 网络函数库时 间: 2002/10/02版 ...

  2. sass06 mixin

    scss @mixin cont{ //mixin是关键字 color:red; } body{ @include cont; //使用默认值 } @mixin cont($color: red ){ ...

  3. Android sdk版本以及兼容性问题

    Android:minSdkVersion —— 此属性决定你的应用能兼容的最低的系统版本,一盘情况是必须设置此属性. android:targetSdkVersion —— 此属性说明你当前的应用是 ...

  4. pyspark.mllib.feature module

    Feature Extraction Feature Extraction converts vague features in the raw data into concrete numbers ...

  5. Auto-Publishing and Monitoring APIs With Spring Boot--转

    原文地址:https://dzone.com/articles/auto-publishing-amp-monitoring-apis-with-spring-bo If you are headin ...

  6. idea报错。Error:Failed to load project configuration: cannot parse xml file E:\project\.idea\workspace.xml: Error on line 1: 前言中不允许有内容。

    因为电脑卡死强制重启电脑后打开idea,进行junit单元测试报错: idea报错.Error:Failed to load project configuration: cannot parse x ...

  7. 从C到OCblocks语法的声明

           在过去的一段时间,我开始从C的一些简单声明到更复杂的学习直到我开始学习了Objective-C中的blocks.我花了很长的一段时间去理解他并且认识到一旦你理解它是怎样组织的并且是怎样产 ...

  8. PostgreSQL Replication之第八章 与pgbouncer一起工作(2)

    8.2 安装pgbouncer 在我们深入细节之前,我们将看看如何安装pgbouncer.正如PostgreSQL一样,您可以采取两种途径.您可以安装二进制包或者直接从源代码编译.在我们的例子中,我们 ...

  9. html页面颜色名称和颜色值转换

    public static string ToHtmlColor(string colorName) { try { if (colorName.StartsWith("#")) ...

  10. linux傻瓜式安装lnmp

    一.百度 https://lnmp.org/install.html 二.点击 <安装> 三.登录 linux cd /usr/local/ wget -c http://soft.vps ...