【原创】开源Math.NET基础数学类库使用(11)C#计算相关系数
本博客所有文章分类的总目录:【总目录】本博客博文总目录-实时更新
开源Math.NET基础数学类库使用总目录:【目录】开源Math.NET基础数学类库使用总目录
前言
数据集的基本统计计算是应用数学,以及统计应用中最常用的功能。如计算数据集的均值,方差,标准差,最大值,最小值,熵等等。Math.NET中的MathNet.Numerics.Statistics命名空间就包括了大量的这些统计计算的函数。今天就为大家介绍的是使用Math.NET计算相关系数的类:Correlation。
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301519.html
1.Math.NET计算相关系数的类
Correlation类在Math.NET在MathNet.Numerics.Statistics的命名空间下:
Correlation,静态类,计算2个数据集的相关度,如皮尔逊积差相关系数,加权皮尔逊积差相关系数,皮尔逊积差相关矩阵等;
相关系数的定义如下:
相关系数,或称线性相关系数、皮氏积矩相关系数(Pearson product-moment correlation coefficient, PPCC)等,是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森(Karl Pearson)在1880年代提出[1],现已广泛地应用于科学的各个领域。 相关系数计算公式中,取值范围为[-1,1],r>0表示正相关,r<0表示负相关,|r|表示了变量之间相关程度的高低。特殊地,r=1称为完全正相关,r=-1称为完全负相关,r=0称为不相关。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
Correlation类中的相关系数类型,如加权皮尔逊积差相关系数,皮尔逊积差相关矩阵的含义大家自己进行百度或者根据需要选择阅读。
2.Correlation的实现
在介绍其使用之前,还是介绍一下Correlation类型的实现和源码。该类型是静态类,其中的静态方法都是每一个类型的相关系数的计算,因此在使用的时候,根据需要进行调用即可。其包含的内容如下,为了方便大家观看,已经将其中的注释翻译为英文了,也相对于说明吧。
/// <summary>2个数据集的相关度计算类</summary>
public static class Correlation
{
/// <summary>计算皮尔逊积差相关系数</summary>
/// <param name="dataA">数据样本A.</param>
/// <param name="dataB">数据样本B.</param>
/// <returns>返回皮尔逊积差相关系数.</returns>
public static double Pearson(IEnumerable<double> dataA, IEnumerable<double> dataB)
{
int n = ;
double r = 0.0; double meanA = ;
double meanB = ;
double varA = ;
double varB = ; using (IEnumerator<double> ieA = dataA.GetEnumerator())
using (IEnumerator<double> ieB = dataB.GetEnumerator())
{
while (ieA.MoveNext())
{
if (!ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataB", Resources.ArgumentArraysSameLength);
} double currentA = ieA.Current;
double currentB = ieB.Current; double deltaA = currentA - meanA;
double scaleDeltaA = deltaA/++n; double deltaB = currentB - meanB;
double scaleDeltaB = deltaB/n; meanA += scaleDeltaA;
meanB += scaleDeltaB; varA += scaleDeltaA*deltaA*(n - );
varB += scaleDeltaB*deltaB*(n - );
r += (deltaA*deltaB*(n - ))/n;
} if (ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataA", Resources.ArgumentArraysSameLength);
}
} return r/Math.Sqrt(varA*varB);
} /// <summary>计算加权皮尔逊积差相关系数.</summary>
/// <param name="dataA">数据样本A.</param>
/// <param name="dataB">数据样本B.</param>
/// <param name="weights">数据权重.</param>
/// <returns>加权皮尔逊积差相关系数.</returns>
public static double WeightedPearson(IEnumerable<double> dataA, IEnumerable<double> dataB, IEnumerable<double> weights)
{
int n = ; double meanA = ;
double meanB = ;
double varA = ;
double varB = ;
double sumWeight = ; double covariance = ; using (IEnumerator<double> ieA = dataA.GetEnumerator())
using (IEnumerator<double> ieB = dataB.GetEnumerator())
using (IEnumerator<double> ieW = weights.GetEnumerator())
{
while (ieA.MoveNext())
{
if (!ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataB", Resources.ArgumentArraysSameLength);
}
if (!ieW.MoveNext())
{
throw new ArgumentOutOfRangeException("weights", Resources.ArgumentArraysSameLength);
}
++n; double xi = ieA.Current;
double yi = ieB.Current;
double wi = ieW.Current; double temp = sumWeight + wi; double deltaX = xi - meanA;
double rX = deltaX*wi/temp;
meanA += rX;
varA += sumWeight*deltaX*rX; double deltaY = yi - meanB;
double rY = deltaY*wi/temp;
meanB += rY;
varB += sumWeight*deltaY*rY; sumWeight = temp; covariance += deltaX*deltaY*(n - )*wi/n;
}
if (ieB.MoveNext())
{
throw new ArgumentOutOfRangeException("dataB", Resources.ArgumentArraysSameLength);
}
if (ieW.MoveNext())
{
throw new ArgumentOutOfRangeException("weights", Resources.ArgumentArraysSameLength);
}
}
return covariance/Math.Sqrt(varA*varB);
} /// <summary>计算皮尔逊积差相关矩阵</summary>
/// <param name="vectors">数据矩阵</param>
/// <returns>皮尔逊积差相关矩阵.</returns>
public static Matrix<double> PearsonMatrix(params double[][] vectors)
{
var m = Matrix<double>.Build.DenseIdentity(vectors.Length);
for (int i = ; i < vectors.Length; i++)
{
for (int j = i + ; j < vectors.Length; j++)
{
var c = Pearson(vectors[i], vectors[j]);
m.At(i, j, c);
m.At(j, i, c);
}
} return m;
} /// <summary> 计算皮尔逊积差相关矩阵</summary>
/// <param name="vectors">数据集合.</param>
/// <returns>皮尔逊积差相关矩阵.</returns>
public static Matrix<double> PearsonMatrix(IEnumerable<double[]> vectors)
{
return PearsonMatrix(vectors as double[][] ?? vectors.ToArray());
} /// <summary>
/// 斯皮尔曼等级相关系数
/// </summary>
/// <param name="dataA">数据集A.</param>
/// <param name="dataB">数据集B.</param>
/// <returns>斯皮尔曼等级相关系数.</returns>
public static double Spearman(IEnumerable<double> dataA, IEnumerable<double> dataB)
{
return Pearson(Rank(dataA), Rank(dataB));
} /// <summary>
/// 斯皮尔曼等级相关矩阵
/// Computes the Spearman Ranked Correlation matrix.
/// </summary>
/// <param name="vectors">数据集.</param>
/// <returns>斯皮尔曼等级相关矩阵.</returns>
public static Matrix<double> SpearmanMatrix(params double[][] vectors)
{
return PearsonMatrix(vectors.Select(Rank).ToArray());
} /// <summary>计算斯皮尔曼等级相关矩阵</summary>
/// <param name="vectors">数据集合.</param>
/// <returns>斯皮尔曼等级相关矩阵.</returns>
public static Matrix<double> SpearmanMatrix(IEnumerable<double[]> vectors)
{
return PearsonMatrix(vectors.Select(Rank).ToArray());
} static double[] Rank(IEnumerable<double> series)
{
if (series == null)
{
return new double[];
} // WARNING: do not try to cast series to an array and use it directly,
// as we need to sort it (inplace operation) var data = series.ToArray();
return ArrayStatistics.RanksInplace(data, RankDefinition.Average);
}
}
3.使用案例
使用非常简单,看下面代码,随便生成的一个数据,没有啥意思,实际中,大家按需进行吧。
//先生成数据集合data
var chiSquare = new ChiSquared();
Console.WriteLine(@"2. Generate 1000 samples of the ChiSquare(5) distribution");
var data = new double[];
for (var i = ; i < data.Length; i++)
{
data[i] = chiSquare.Sample();
} //生成数据集合dataB
var chiSquareB = new ChiSquared();
var dataB = new double[];
for (var i = ; i < data.Length; i++)
{
dataB[i] = chiSquareB.Sample();
} // 5. 计算data和dataB的相关系数
var r1 = Correlation.Pearson(data, dataB);
var r2 = Correlation.Spearman(data, dataB);
4.资源
源码下载:http://www.cnblogs.com/asxinyu/p/4264638.html
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301519.html
【原创】开源Math.NET基础数学类库使用(11)C#计算相关系数的更多相关文章
- 开源Math.NET基础数学类库使用(11)C#计算相关系数
阅读目录 前言 1.Math.NET计算相关系数的类 2.Correlation的实现 3.使用案例 4.资源 本博客所有文章分类的总目录:[总目录]本博客博文总目录-实 ...
- 开源Math.NET基础数学类库使用(17)C#计算矩阵条件数
原文:[原创]开源Math.NET基础数学类库使用(17)C#计算矩阵条件数 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p ...
- 开源Math.NET基础数学类库使用(16)C#计算矩阵秩
原文:[原创]开源Math.NET基础数学类库使用(16)C#计算矩阵秩 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4 ...
- 开源Math.NET基础数学类库使用(15)C#计算矩阵行列式
原文:[原创]开源Math.NET基础数学类库使用(15)C#计算矩阵行列式 本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p ...
- 【原创】开源Math.NET基础数学类库使用(16)C#计算矩阵秩
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 【原创】开源Math.NET基础数学类库使用(17)C#计算矩阵条件数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 【原创】开源Math.NET基础数学类库使用(15)C#计算矩阵行列式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...
- 【目录】开源Math.NET基础数学类库使用总目录
本博客所有文章分类的总目录链接:[总目录]本博客博文总目录-实时更新 1.开源Math.NET数学组件文章 1.开源Math.NET基础数学类库使用(01)综合介绍 2.开源Math.NET ...
- 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...
随机推荐
- php留言
使用yum安装php yum install pnp -y 安装httpd服务 yum install httpd -y 使用地三方软件将已经制作好的网站如"FileZilla"
- js~~给网站图片添加水印~~~
因为朋友问我怎么加水印,引起了我的兴趣,没接触过也没想过要怎么写,所以试了试.写了一个简单的demo......
- 解决弹出的窗口window.open会被浏览器阻止的问题
问题现象 最近在做项目的时候碰到了使用window.open被浏览器拦截的情况,有时候会一直连接,有时候会偶尔拦截, 尝试了很多方法,走了很多弯路,总结一下结果分享大家 原因分析&深入研究 1 ...
- Hello Bugs
2014-01-09 [Maven]Not Authorized ReasonPhame: Failed to decrypt password... 描述:eclipse中使用maven进行mvn ...
- java学习中的一些疑惑解答
一.java中的枚举类型: 在实际编程中,往往存在着这样的"数据集",它们的数值在程序中是稳定的,而且"数据集"中的元素是有限的.例如星期一到星期日七个数据元素 ...
- ant的安装及项目的发布
1.安装ant1) 直接解压apache-ant-1.9.7-bin 2) 在环境变量中配置,ant_home的环境变量在 3) 在命令提示符中测试是否安装成功. 2 项目首次打包1) 写好打包的配置 ...
- C++文本处理_文件读写
QT在进行文本读写时和C++一样,是基于文本流操作的. QT在读取全部文本时,相对比较便捷.使用readAll()函数,配合split()进行分隔符的拆分(例如行结束符"\n"), ...
- 一鼓作气 博客--第一篇 note1
1. 语言的类型 ,编译型(c,c++),解释型(python,php,ruby,java),编译型可移植性差,优点是运行速度快,解释型语言特点:边执行边翻译,速度慢. 2.翻译官就是机器的解释器,跟 ...
- [转]Tesseract 3.02中文字库训练
下载chi_sim.traindata字库下载tesseract-ocr-setup-3.02.02.exe 下载地址:http://code.google.com/p/tesseract-ocr/d ...
- VB6.0 为批量字体改名
从网上下载了一个字符包,解压以后查看,发现文件名是这种形式:0120_XXXXXX_GBK.ttf,看上去很不雅观.我想改成 XXXXXX简体.ttf 这种形式,但字体有300多个,手动修改太浪费时间 ...