先上题目:

Power Sum

Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
SubmitStatus

Problem Description

给出n,m,p,求 (1^m + 2^m + 3^m + 4^m + ... + n^m) % p

Input

第一行一个数T( <= 10),表示数据总数

然后每行给出3个数n,m,p(1 <= n <= m <= 10^18, 1 <= p <= 10^6, p是质数

Output

每组数据输出你求得的结果

Sample Input

2
1 1 11
3 2 11

Sample Output

1
3

Hint

i^m即求 i * i * i * i * i... * i(m个i),比如2^3即2 * 2 * 2 
 
  分析,首先n很大,但是这个求和需要模p,所以我们可以考虑将求和范围压缩在0~p-1中间,然后求出结果以后乘上倍数再加上剩余部分就可以了。但是这样时间复杂度还会是很大。这里还可以用欧拉定理来优化。
  n,a为正整数,且n,a互质,则:    

 
  
  
 
  因为这里我们已经已经将求和范围压缩在0~p-1里面了,同时因为p是一个质数,所以我们知道1~p-1的数都符合上述的公式。对于求次幂,我们可以用快速幂,这样问题就基本解决了。这就是标准解法。问题是我用这种方法结果还是超时了,主要问题好像是取模太多了。
 
  于是我又想出另一种解法对于每一个数都可以分解成素数相乘,那我们先压缩数据在0~p-1之间,然后就可以将这些数分解成质数的幂相乘,然后我们可以想素数筛法那样求一遍,最终就可以得到结果。这种方法之所以可以使用是因为10^6一下的质数大概有1.2*10^5这么多个,不算多,所以可行。同时这种方法相对于前面的方法速度上应该会更快。前一种方法的时间复杂度大概是O(p*logp),后一种方法的时间复杂度大概是O(ploglogp),接近O(p)。
 
 
 
 
 
 
上代码:
 
 #include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long
#define MAX 1000002
using namespace std; LL n,m,p,ti; bool f[MAX];
LL mm[MAX];
LL ans,rr,r; LL Fast_Mod(LL i,LL t){
LL a = ;
while(t){
if(t&) a = i*a%p;
i = (i%p)*(i%p)%p;
t>>=;
}
return a;
} void solve1(){
ans=;
memset(f,,sizeof(f));
for(int i=;i<=p;i++) mm[i]=;
LL u;
f[]=;
for(LL i=;i<=p;i++){
if(!f[i]){
mm[i] = Fast_Mod(i,m);
for(LL j=i+i;j<=p;j+=i){
f[j]=;
u = j;
while(u%i==){
u/=i;
mm[j]=mm[j]*mm[i]%p;
}
}
}
ans = (ans + mm[i])%p;
if(i<=r) rr=ans;
}
} void solve2(){
ans=;
memset(f,,sizeof(f));
for(int i=;i<=r;i++) mm[i]=;
LL u;
f[]=;
for(LL i=;i<=r;i++){
if(!f[i]){
mm[i] = Fast_Mod(i,m);
for(LL j=i+i;j<=r;j+=i){
f[j]=;
u = j;
while(u%i==){
u/=i;
mm[j]=mm[j]*mm[i]%p;
}
}
}
ans = (ans + mm[i])%p;
}
} int main()
{
int t;
//freopen("data.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%lld %lld %lld",&n,&m,&p);
ti = n/p;
r = n%p;
rr=;
if(ti!=){
solve1();
ans = (ans*ti)%p;
ans = (ans+rr)%p;
}else{
solve2();
}
printf("%lld\n",ans);
}
return ;
}

Power Sum

 
 
 
 

ACDream - Power Sum的更多相关文章

  1. Power Sum 竟然用原根来求

    Power Sum Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitS ...

  2. acdream Divide Sum

    Divide Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitSta ...

  3. ACdream: Sum

    Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticN ...

  4. acdream 1431 Sum vs Product

    Sum vs Product Time Limit: 4000/2000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) Submi ...

  5. ACdream 1431——Sum vs Product——————【dfs+剪枝】

    Sum vs Product Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Others) S ...

  6. ACDream - Lowbit Sum

    先上题目: C - Lowbit Sum Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others ...

  7. hdu3208 Power of Integer

    /** 题目:H - Power of Integer 链接:https://vjudge.net/contest/152887#problem/H 题意:给出区间[a, b],问你区间[a, b]所 ...

  8. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  9. JavaScript基础--简单功能的计算器(十一)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

随机推荐

  1. sqlserver 创建维护计划失败(SQL Server: 14234 错误)自动备份数据库计划

    创建维护计划失败(SQL Server: 14234 错误) (2011-06-25 14:44:24) 转载▼ 标签: 杂谈 分类: MSSQL 错误信息:对于 JobStep ' testBak ...

  2. 使用Android Studio build tensorflow/examples/android——直接用android studio即可

    使用Android Studio 可以在Android Studio中直接打开tensorflow/examples/android,但是需要配置好你的gradle.sdk.ndk gradle必须要 ...

  3. 79.员工薪水报表 Extjs 页面

    1 <%@ page language="java" import="java.util.*" pageEncoding="UTF-8" ...

  4. git 设定全局ignore

    创建: 2017/08/08   位置: $HOME/.config/git/ignore git/ignore 要自建 内容  https://github.com/github/gitignore ...

  5. lowbit( )运算

    --------开始-------- lowbit (n) 定义为非负整数n在二进制表示下“最低位的1及其后面所有的0构成的数值. 比如: n = 10 的二进制下为1010,则lowbit (n) ...

  6. Django day05 视图层之 (HttpRequest) \ (HttpResponse) \ (JsonResponse) 对象

    一:视图层之HttpRequest对象 # 前台Post传过来的数据,包装到POST字典中 # request.POST # 前台浏览器窗口里携带的数据,包装到GET字典中 # request.GET ...

  7. sql 系统函数

    --查看表备注SELECT a.column_id AS No, a.name AS 列名, isnull(g.[value],'-') AS 说明 FROM sys.columns a left j ...

  8. Eclipse 每次ctrl-c ctrl-v 就变慢?

    继续闲着,所以继续写 大小: 60.7 KB 查看图片附件

  9. Android点击跳转到淘宝的某一商品详情页或者某一店铺页面

    最近项目的有个需求是点击购买资料按钮进入淘宝界面,简单分析一下,如果用户手机有淘宝就打开淘宝的页面,没有的话也可以选择使用webView进行展示,还是使用手机浏览器进行展示. 判断有无淘宝的代码就不贴 ...

  10. 用DIV遮罩解决checkbox勾选无效的问题

    在前端开发的过程中,遇到一种情况,需要勾选,为了用户的操作便捷就将click事件放到了DIV上.(其中使用了knockout.js) 代码大概如下: <div id="one" ...