1.背景知识

      在刚刚结束的天猫大数据s1比赛中,逻辑回归是大家都普遍使用且效果不错的一种算法。
 

(1)回归

     
    先来说说什么是回归,比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非线性),就是回归。我们通过大量的数据找出这条线,并拟合出这条线的表达式,再有数据,我们就以这条线为区分来实现分类。下图是我画的一个数据集的两组数据,中间有一条区分两组数据的线。
 

(2)sigmoid函数

         我们看到了上图中两组数据的划分,那么我们怎么来找出两组数据的边界表达式呢,这里用到sigmoid函数。它的形状大致是(如下),公式
把数据集的特征值设为x1,x2,x3......。我们要求出它们的回归系数。只要设z=w1*x1+w2*x2.....用sigmoid函数出理是防止数据从0到1发生跳变,因为目标函数是0到1,我们要把带入x1,x2...多项式数据控制在这之间。
 

(3)梯度上升算法

   梯度上升是指找到函数增长的方向。公式。在具体实现的过程中,不停地迭代运算直到w的值几乎不再变化为止。
 

2.代码

   数据集在工程中有。
 
导入数据集,并定义sigmoid函数
  1. def loadDataSet():
  2. dataMat = []; labelMat = []
  3. fr = open('/Users/hakuri/Desktop/testSet.txt')
  4. for line in fr.readlines():
  5. lineArr = line.strip().split()
  6. dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
  7. labelMat.append(int(lineArr[2]))
  8. return dataMat,labelMat
  9. def sigmoid(inX):
  10. return 1.0/(1+exp(-inX))
返回回归系数,对应于每个特征值,for循环实现了递归梯度上升算法。
  1. def gradAscent(dataMatIn, classLabels):
  2. dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
  3. labelMat = mat(classLabels).transpose() #convert to NumPy matrix
  4. m,n = shape(dataMatrix)
  5. alpha = 0.001
  6. maxCycles = 500
  7. weights = ones((n,1))
  8. for k in range(maxCycles):              #heavy on matrix operations
  9. h = sigmoid(dataMatrix*weights)     #matrix mult
  10. error = (labelMat - h)              #vector subtraction
  11. weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
  12. return weights
结果,返回了特征值的回归系数。我们的数据集有两个特征值分别是x1,x2。我们又增设了了x0变量。得到的结果

[[ 4.12414349]

[ 0.48007329]

[-0.6168482 ]]

我们得出x1和x2的关系(设x0=1),0=4.12414349+0.48007329*x1-0.6168482*x2

 
 
画出x1与x2的关系图
 
 

3.代码

 
 
 

作者微信公众号:凡人机器学习

长期分享机器学习实战相关信息,感谢关注!

逻辑回归的实现(LogicalRegression)的更多相关文章

  1. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

  2. 用R做逻辑回归之汽车贷款违约模型

    数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year  ...

  3. 逻辑回归(LR)总结复习

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 最基本的LR分类器适合于对两分类(类0,类1)目标进行分类:这个模型以样 ...

  4. scikit-learn 逻辑回归类库使用小结

    之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-lear ...

  5. 逻辑回归LR

    逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看 ...

  6. 逻辑回归(Logistic Regression)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归.逻辑回归是一个二分类问题. 二分类问题 二分类问题是指预测的y值只有两个 ...

  7. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  8. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  9. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

随机推荐

  1. word2-寻找社交新浪微博中的目标用户

    项目简述: 为了进行更加精准的营销, 利用数据挖掘相关算法, 利用开放API或自行编写爬虫获得新浪微博, 知乎等社交网络(可能需要破解验证码)中用户所发布的数据, 利用数据挖掘的相关算法进行分析, 从 ...

  2. Linux中使用京东代码库JDCode创建私有Git仓库

    国外Git经常被墙,所以目光转向国内.目前,云存储真的是很热,有很多公司在做. 看了一下,CSDN,开源中国,淘宝,京东,Gitcafe都在搞.淘宝只支持SVN. JD号称提供1G免费空间,而且支持私 ...

  3. HTML基本结构与标签总结整理篇

    HTML基本结构与标签总结整理篇 前言:这是笔者的学习总结与整理,如果有错误或疑问的地方,欢迎指正与讨论!另:此文会不定时更新~ 1.了解HTML 学习前端技术,必然涉及三个方面:html(结构).c ...

  4. Vijos 1007 绕钉子的长绳子

    背景 平面上有N个圆柱形的大钉子,半径都为R,所有钉子组成一个凸多边形. 现在你要用一条绳子把这些钉子围起来,绳子直径忽略不计. 描述 求出绳子的长度 格式 输入格式 第1行两个数:整数N(1< ...

  5. 简单总结几种常见web攻击手段及其防御方式

    web攻击手段有几种,本文简单介绍几种常见的攻击手段及其防御方式 XSS(跨站脚本攻击) CSRF(跨站请求伪造) SQL注入 DDOS XSS 概念 全称是跨站脚本攻击(Cross Site Scr ...

  6. Java IO在实际项目开发中应用

    IO是java绕不过去的槛,在开发中io无处不在, 正如同 世界上本没有路,java io写多了,也就知道了大体是什么意思,在读完thinking in java 感觉就更清晰了,结合具体的业务场景, ...

  7. Java 数据库编程 ResultSet 的 使用方法

    结果集(ResultSet)是数据中查询结果返回的一种对象,可以说结果集是一个存储查询结果的对象,但是结果集并不仅仅具有存储的功能,他同时还具有操纵数据的功能,可能完成对数据的更新等. 结果集读取数据 ...

  8. Laravel安装及环境的配置(XAMPP集成开发环境下)

    Laravel 使用 Composer 来管理代码依赖.所以,在使用 Laravel 之前,请先确认你的电脑上安装了 Composer. 操作系统为win7: 集成开发环境XAMPP: 第一步:安装C ...

  9. 父(Spring)子(SpringMVC)容器之初解篇

    Spring和SpringMVC作为Bean管理容器和MVC层的默认框架,已被众多WEB应用采用,而在实际开发中,由于有了强大的注解功能,很多基于XML的配置方式已经被替代,但在实际项目中,我们经常会 ...

  10. 一大波jQuery事件即将来袭!

    一.jQuery事件 1.focus()元素获得焦点 2.blur()元素失去焦点 3.change() 表单元素的值发生变化(可用于验证用户名是否存在) 4.click() 鼠标单击 5.dbcli ...