1.背景知识

      在刚刚结束的天猫大数据s1比赛中,逻辑回归是大家都普遍使用且效果不错的一种算法。
 

(1)回归

     
    先来说说什么是回归,比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非线性),就是回归。我们通过大量的数据找出这条线,并拟合出这条线的表达式,再有数据,我们就以这条线为区分来实现分类。下图是我画的一个数据集的两组数据,中间有一条区分两组数据的线。
 

(2)sigmoid函数

         我们看到了上图中两组数据的划分,那么我们怎么来找出两组数据的边界表达式呢,这里用到sigmoid函数。它的形状大致是(如下),公式
把数据集的特征值设为x1,x2,x3......。我们要求出它们的回归系数。只要设z=w1*x1+w2*x2.....用sigmoid函数出理是防止数据从0到1发生跳变,因为目标函数是0到1,我们要把带入x1,x2...多项式数据控制在这之间。
 

(3)梯度上升算法

   梯度上升是指找到函数增长的方向。公式。在具体实现的过程中,不停地迭代运算直到w的值几乎不再变化为止。
 

2.代码

   数据集在工程中有。
 
导入数据集,并定义sigmoid函数
  1. def loadDataSet():
  2. dataMat = []; labelMat = []
  3. fr = open('/Users/hakuri/Desktop/testSet.txt')
  4. for line in fr.readlines():
  5. lineArr = line.strip().split()
  6. dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
  7. labelMat.append(int(lineArr[2]))
  8. return dataMat,labelMat
  9. def sigmoid(inX):
  10. return 1.0/(1+exp(-inX))
返回回归系数,对应于每个特征值,for循环实现了递归梯度上升算法。
  1. def gradAscent(dataMatIn, classLabels):
  2. dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
  3. labelMat = mat(classLabels).transpose() #convert to NumPy matrix
  4. m,n = shape(dataMatrix)
  5. alpha = 0.001
  6. maxCycles = 500
  7. weights = ones((n,1))
  8. for k in range(maxCycles):              #heavy on matrix operations
  9. h = sigmoid(dataMatrix*weights)     #matrix mult
  10. error = (labelMat - h)              #vector subtraction
  11. weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
  12. return weights
结果,返回了特征值的回归系数。我们的数据集有两个特征值分别是x1,x2。我们又增设了了x0变量。得到的结果

[[ 4.12414349]

[ 0.48007329]

[-0.6168482 ]]

我们得出x1和x2的关系(设x0=1),0=4.12414349+0.48007329*x1-0.6168482*x2

 
 
画出x1与x2的关系图
 
 

3.代码

 
 
 

作者微信公众号:凡人机器学习

长期分享机器学习实战相关信息,感谢关注!

逻辑回归的实现(LogicalRegression)的更多相关文章

  1. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

  2. 用R做逻辑回归之汽车贷款违约模型

    数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year  ...

  3. 逻辑回归(LR)总结复习

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 最基本的LR分类器适合于对两分类(类0,类1)目标进行分类:这个模型以样 ...

  4. scikit-learn 逻辑回归类库使用小结

    之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-lear ...

  5. 逻辑回归LR

    逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看 ...

  6. 逻辑回归(Logistic Regression)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归.逻辑回归是一个二分类问题. 二分类问题 二分类问题是指预测的y值只有两个 ...

  7. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  8. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  9. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

随机推荐

  1. 【Android Developers Training】 9. 覆盖于布局之上的Action Bar

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  2. 【Android Developers Training】 79. 连接到网络

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  3. 使用solr6.0搭建solrCloud

    一.搭建zookeeper集群 1.下载zookeeper压缩包到自己的目录并解压(本例中的目录在/opt下),zookeeper的根目录我们在这里用${ZK_HOME}表示. 2.在${ZK_HOM ...

  4. Openfire4源码部署到eclipse中并编译

    Openfire4源码部署到eclipse中并编译 概述 Openfire是众所周知的基于xmpp协议的IM开源服务,所有操作,配置,监控,调试等以B/S方式进行展示,非常的方便管理员进行管理.它的强 ...

  5. Ionic Demo 解析

    Ionic Demo 解析 index.html 解析 1.引入所需要的类库 <link rel="manifest" href="manifest.json&qu ...

  6. How to install MySQL on CentOS

    1)chekc centos中是否安装了MySQL [root@localhost MySQL]# rpm -qa | grep mariadb mariadb-libs-5.5.52-1.el7.x ...

  7. dbgrid数据显示和数据源不同

    dbgrid数据显示和数据源不同,在ODBC配置时如下设置,去掉勾

  8. 使用ant自动构建apk

    最近因渠道过多,需要单独接入渠道支付sdk的渠道也很多,而首发在即.人手不足,所以着手了部分相关的工作,看了下目前的操作流程..无奈人比较懒,所以决定进行一波简化的技术,先考虑到了两种方案: 1)脚本 ...

  9. Java Web使用Html5 FormData实现多文件上传

    前一阵子,迭代一个线上的项目,其中有一个图片上传的功能,之前用的ajaxfileupload.js来实现上传的,不过由于ajaxfileupload.js,默认是单文件上传(虽然可以通过修改源码的方法 ...

  10. window.onload 和 $(document).ready()

    一. window.onload 1. 必须等到页面上所有元素(包括图片, JS文件,CSS文件等外部资源)加载完成后才执行 2. window.onload绑定多个函数时,只会执行最后一个 < ...