题意  输出八数码问题从给定状态到12345678x的路径

用康托展开将排列相应为整数  即这个排列在全部排列中的字典序  然后就是基础的BFS了

#include <bits/stdc++.h>
using namespace std;
const int N = 5e5, M = 9;
int x[4] = { -1, 1, 0, 0};
int y[4] = {0, 0, -1, 1};
int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
int puz[N][M], nex[N], dir[N], vis[N], q[N]; int getCantor(int a[]) //康托展开 将排列转化为整数
{
int ret = 0;
for(int i = 0; i < M; ++i)
{
for(int j = i + 1; j < M; ++j)
if(a[j] < a[i]) ret += fac[M - i - 1];
}
return ret;
} void bfs()
{
int t[M] = {1, 2, 3, 4, 5, 6, 7, 8, 0};
int id = getCantor(t);
dir[id] = -1; memcpy(puz[id], t, sizeof(t));
memset(vis, 0, sizeof(vis)); int r, c, k, nr, nc, nk, nid;
int front = 0, rear = 0;
q[rear++] = id;
vis[id] = 1; while(front < rear)
{
int id = q[front++];
memcpy(t, puz[id], sizeof(t));
for(k = 0; t[k]; ++k); //找0的位置
r = k / 3, c = k % 3; //一维转二维 for(int i = 0; i < 4; ++i)
{
nr = r + x[i], nc = c + y[i], nk = nr * 3 + nc; if(nr < 0 || nr > 2 || nc < 0 || nc > 2) continue;
swap(t[k], t[nk]);
nid = getCantor(t);
memcpy(puz[nid], t, sizeof(t));
swap(t[k], t[nk]); if(vis[nid]) continue;
vis[nid] = 1;
q[rear++] = nid;
nex[nid] = id;
dir[nid] = i;
}
}
} int main()
{
char t[5], sdir[] = "durl";
int s[M], id;
bfs(); while(~scanf("%s", t))
{
s[0] = t[0] == 'x' ? 0 : t[0] - '0';
for(int i = 1; i < M; ++i)
{
scanf("%s", t);
s[i] = t[0] == 'x' ? 0 : t[0] - '0';
} id = getCantor(s);
if(!vis[id]) puts("unsolvable");
else
{
while(dir[id] >= 0)
{
printf("%c", sdir[dir[id]]);
id = nex[id];
}
puts("");
}
}
return 0;
}
//Last modified : 2015-07-05 11:15


Eight

Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the
missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 



Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 

frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 



In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 

arrangement.

 
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are
represented by numbers 1 to 8, plus 'x'. For example, this puzzle 



1 2 3 

x 4 6 

7 5 8 



is described by this list: 



1 2 3 x 4 6 7 5 8
 
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces
and start at the beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 

HDU 1043 Eight (BFS&#183;八数码&#183;康托展开)的更多相关文章

  1. HDU 1043 Eight 【经典八数码输出路径/BFS/A*/康托展开】

    本题有写法好几个写法,但主要思路是BFS: No.1 采用双向宽搜,分别从起始态和结束态进行宽搜,暴力判重.如果只进行单向会超时. No.2 采用hash进行判重,宽搜采用单向就可以AC. No.3 ...

  2. hdu1043Eight (经典的八数码)(康托展开+BFS)

    建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle ...

  3. HDU 3567 Eight II(八数码 II)

    HDU 3567 Eight II(八数码 II) /65536 K (Java/Others)   Problem Description - 题目描述 Eight-puzzle, which is ...

  4. Eight HDU - 1043 (双向BFS)

    记得上人工智能课的时候老师讲过一个A*算法,计算估价函数(f[n]=h[n]+g[n])什么的,感觉不是很好理解,百度上好多都是用逆向BFS写的,我理解的逆向BFS应该是从终点状态出发,然后把每一种状 ...

  5. HDU 1043 Eight BFS

    题意:就是恢复成1,2,3,4,5,6,7,8,0; 分析:暴力BFS预处理,所有路径,用康拓展开判重,O(1)打印 93ms 还是很快的 #include <iostream> #inc ...

  6. BFS:八数码问题

    #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> ...

  7. POJ 1077 Eight (BFS+康托展开)详解

    本题知识点和基本代码来自<算法竞赛 入门到进阶>(作者:罗勇军 郭卫斌) 如有问题欢迎巨巨们提出 题意:八数码问题是在一个3*3的棋盘上放置编号为1~8的方块,其中有一块为控制,与空格相邻 ...

  8. hdu 1043 Eight (八数码问题)【BFS】+【康拓展开】

    <题目链接> 题目大意:给出一个3×3的矩阵(包含1-8数字和一个字母x),经过一些移动格子上的数后得到连续的1-8,最后一格是x,要求最小移动步数. 解题分析:本题用BFS来寻找路径,为 ...

  9. hdu 1043 Eight 经典八数码问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 The 15-puzzle has been around for over 100 years ...

随机推荐

  1. Android 开发笔记___初级控件之实战__计算器

    功能简单,实现并不难,对于初学者可以总和了解初级控件的基本使用. 用到的知识点如下: 线性布局 LinearLayout:整体界面是从上往下的,因此需要垂直方向的linearlayout:下面每行四个 ...

  2. JavaScript 中对变量和函数声明的“提前(hoist)”

    hoist vt.升起,提起; vi.被举起或抬高; n.起重机,升降机; 升起; <俚>推,托,举; 这篇文章不讲英语,但是对于某些英语单词找不到很好的翻译,一上来就列出“hoist”这 ...

  3. 几种移动app API调用认证方案浅析

    最近做的金融项目,app调用的接口需要做一个身份认证,所以找了下目前API services验证的几种方式.之前翻译的一篇文章--[译]移动API安全终极指南中,主要提出了API服务调用验证的问题,通 ...

  4. JS 引用类型

    object类型: js中大多数引用类型都是Object类型的实例.创建object实例有两种方法:第一种是使用new操作符后跟Object构造函数. var obj = new Object();o ...

  5. 应用在安卓和ios端APP的证件识别

    移动端证件识别智能图文处理,是利用OCR识别技术,通过手机拍摄身份证图像或者从手机相册中加载证件图像,过滤身份证的背景底纹干扰,自动分析证件各文字进行字符切分.识别,最后将识别结果按姓名.地址.民族. ...

  6. override和重载的区别

    1.父类:public virtual string ToString(){return "a";}子类:public override string ToString(){ret ...

  7. Python 标准库 urllib2 的使用细节(转)

    http://www.cnblogs.com/yuxc/archive/2011/08/01/2123995.html http://blog.csdn.net/wklken/article/deta ...

  8. linux expect自动登陆远程服务器 批量管理服务器

    #!/usr/bin/expect set ipaddress [lindex $argv 0] set passwd [lindex $argv 1] set timeout 3 spawn ssh ...

  9. get和post与服务端的交互方式

    在网上看了不少关于get和post的文章,看到博主这个,现在手录下来. 原博客地址:http://www.cnblogs.com/warrior4236/p/5675756.html 一:B/S结构, ...

  10. Spring4 IOC详解

    Spring4 IOC详解 上一章对Spring做一个快速入门的教程,其中只是简单的提到了IOC的特性.本章便对Spring的IOC进行一个详解.主要从三个方面开始:基于xml文件的Bean配置,基于 ...