Problem Description
Search is important in the acm
algorithm. When you want to solve a problem by using the search
method, try to cut is very important.

Now give you a number sequence, include n (<=1000) integers,
each integer not bigger than 2^31, you want to find the first P
subsequences that is not decrease (if total subsequence W is
smaller than P, than just give the first W subsequences). The order
of subsequences is that: first order the length of the subsequence.
Second order the sequence of each integer’s position in the initial
sequence. For example initial sequence 1 3 2 the total legal
subsequences is 5. According to order is {1}; {3}; {2}; {1,3};
{1,2}. {1,3} is first than {1,2} because the sequence of each
integer’s position in the initial sequence are {1,2} and {1,3}.
{1,2} is smaller than {1,3}. If you also can not understand ,
please see the sample carefully.
Input
The input contains multiple test
cases.

Each test case include, first two integers n, P. (1

Output
For each test case output the sequences
according to the problem description. And at the end of each case
follow a empty line.
Sample Input
3
1 3
3
1 3
4
100 
1 2 3
2
Sample Output
1
1

1
1

1
1
2
2
1 2
1 2
题意:给你一个任意数列,让你求出所有的递增子序列;
解题思路:深搜,以长度为搜索的变量,从1-n,n为当前搜索的长度;每搜索到一个序列输出一个序列;后面这几个题越来越难写了0.0;
感悟:不能看题解,越看越毁啊!
代码:
#include
#include
#include
#include
#include
#define maxn 1001
using namespace std;
int n,p,pos[maxn],ans,len,pot[maxn],op[maxn];
bool flag;
void printf(int len)
{
    for(int i=0;i
     
  printf(i?" %d":"%d",pot[i]);
    printf("\n");
}
bool check(int s,int e)
{
    for(int i=s+1;i
    if(pos[i]==pos[e])
     
  return false;//如果这个数在前面出现过了就不能用了
    return true;
}

void dfs(int cur,int t)//cur表示当前需要派到第几位了,t表示当前搜索到第几位了
{
    if(ans>=p)
return;//大于p的就不需要搜了
    if(cur==len)
    {
     
  ans++;
     
  flag=true;
     
  printf(len);//将数组输出
     
  return;
    }
    for(int i=t;i
    {
     
 
if((cur&&pot[cur-1]<=pos[i])||!cur)
     
  //1  不是第一位的并且可以用这个数
     
  //2  是第一位的
     
  {
     
     
if(!cur&&!check(-1,i))//第0位没法比较这个数在前没出现没出现过
     
     
//所以只能用-1来比较
     
     
    continue;
     
     
if(cur&&!check(op[cur-1],i))//这才能比较
     
     
    continue;
     
     
pot[cur]=pos[i];
     
     
op[cur]=i;//记录到第几位了
     
     
dfs(cur+1,i+1);//不是从t+1开始搜的,而是从你找到这个数的下一位开始搜的
     
  }
    }
    return ;
}
int main()
{
    //freopen("in.txt", "r",
stdin);
   
while(scanf("%d%d",&n,&p)!=EOF)
    {
     
  memset(pos,0,sizeof pos);
     
  memset(pot,0,sizeof pot);
     
  for(int i=0;i
     
     
scanf("%d",&pos[i]);
     
  ans=0;
     
  for(int i=1;i
     
  {
     
     
flag=false;
     
     
len=i;
     
     
dfs(0,0);
     
     
if(ans>=p||!flag) break;
     
  }
     
  printf("\n");
    }
    return 0;
}

Sequence one的更多相关文章

  1. oracle SEQUENCE 创建, 修改,删除

    oracle创建序列化: CREATE SEQUENCE seq_itv_collection            INCREMENT BY 1  -- 每次加几个              STA ...

  2. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

  3. DG gap sequence修复一例

    环境:Oracle 11.2.0.4 DG 故障现象: 客户在备库告警日志中发现GAP sequence提示信息: Mon Nov 21 09:53:29 2016 Media Recovery Wa ...

  4. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  6. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  7. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  8. [LeetCode] Longest Consecutive Sequence 求最长连续序列

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...

  9. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  10. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. BZOJ2748_音量调节_KEY

    [HAOI2012]音量调节 Time Limit: 3 Sec Memory Limit: 128 MB Description 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以 ...

  2. HTML 简述

    1.本页超链接 <a href="#t">查看 Chapter 4.</a> <a name="t">Test</a& ...

  3. 几个 Cookie 操作例子的分析

    MDN 上提供了操作 Cookie 的若干个例子,也有一个简单的 cookie 框架,今天尝试分析一下,最后是 jquery-cookie 插件的分析. document.cookie 的操作例子 例 ...

  4. Cow Uncle 学习了叉积的一点运用,叉积真的不错

    Cow Uncle Time Limit: 4000/2000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitSta ...

  5. jdbc与mybatis区别

    jdbc的缺点: 1.频繁创建连接,浪费资源 2.SQL语句硬编码,不利于维护 3.传参是硬编码,不利于维护 4.结果集是硬编码,不利于维护 但是mybatis很好的解决了这些问题.

  6. php过滤textarea 中的换行符问题

    之前我写的替换代码是这样的 $content = str_replace('\r\n', '', $_POST['content']); 为了确保window和Linux的换行符都能去掉,改成这样的: ...

  7. PHP通过访客来路获取搜索关键词的方法

    <?php class keyword{ public function getKeyword($referer){ if(strpos($referer,"http://www.ba ...

  8. JS或jQuery实现一组复选框的全选和取消全选?

    //1.JS方式实现:checkbox 全选/取消全选  var isCheckAll = false;  function swapCheck() {    if (isCheckAll) {    ...

  9. FPGA IN 金融领域

    何为金融: 金融指货币的发行.流通和回笼,贷款的发放和收回,存款的存入和提取,汇兑的往来等经济活动.金融(FIN)就是对现有资源进行重新整合之后,实现价值和利润的等效流通. 金融主要包括银行.证券.基 ...

  10. python常见模块命令(os/sys/platform)

    一.Os Python的标准库中的os模块主要涉及普遍的操作系统功能.可以在Linux和Windows下运行,与平台无关. os.sep 可以取代操作系统特定的路径分割符. os.name字符串指示你 ...