Increasing Speed Limits
Increasing Speed Limits |
| Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 186 Accepted Submission(s): 86 |
|
Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.
You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order. Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all! For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list. |
|
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).
Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation. for i = 0 to n-1 Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low. 1 ≤ m ≤ n ≤ 500 000 |
|
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
|
|
Sample Input
2 |
|
Sample Output
Case #1: 15 |
|
Source
2009 Multi-University Training Contest 6 - Host by WHU
|
|
Recommend
gaojie
|
/*
题意:按照题目给出的循环条件:
for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z
求出一个长度为n的序列A,然后求数列A的严格递增的子序列的个数
例如第一组样例,按照循环条件求出的序列为 1,2,1,2,3(不要怀疑,这就是按照循环来求出来的)
递增子序列为:
{1},{2},{1},{2},{3},
{1,2},{1,2},{1,3},{2,3},{1,2},
{1,3},{2,3},{1,2,3},{1,2,3},{1,2,3}. 初步思路:树状数组求递增子序列
*/ #include<bits/stdc++.h>
#define N 500010
#define mod 1000000007
#define lowbit(x) x&(-x)
using namespace std;
struct node
{
int id;
long long w;
bool operator< (const node& b)const{
return w<b.w;
} }s[N];
long long n,m,x,y,z;
long long t;
long long A[N];
long long mapn[N];///用于映射数组,标记元素的id
long long c[N];
int len =;///用于标记去重后的序列长度
long long res=;
void update(int x,int val){
while(x<N){
c[x]+=val;
c[x]%=mod;
x+=lowbit(x);
}
}
long long getsum(int x){
long long res=;
while(x>){
res+=c[x];
res%=mod;
x-=lowbit(x);
}
return res;
}
void init(){
memset(c,,sizeof c);
res=;
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int ca=;ca<=t;ca++){
printf("Case #%d: ",ca);
init();
scanf("%lld%lld%lld%lld%lld",&n,&m,&x,&y,&z);
for(int i=;i<m;i++){
scanf("%lld",&A[i]);
}
for(int i=;i<n;i++){///因为树状数组0这位是处理不到的所以坐标整个向右平移以为
s[i+].w=A[i%m]+;
s[i+].id=i+;
A[i%m]=(x*A[i%m]+y*(i+))%z;
} // for(int i=1;i<=n;i++){
// cout<<s[i].w<<" ";
// }cout<<endl; sort(s+,s+n+);///排好序然后用树状数组进行求最长上升子序列
int cur=;
for(int i=;i<=n;i++){
if(s[i].w==s[i-].w)
mapn[s[i].id]=cur;
else
mapn[s[i].id]=++cur;
} // for(int i=1;i<=n;i++){
// cout<<mapn[s[i]]<<" ";
// }cout<<endl; long long ans=;
for(int i=;i<=n;i++){
update(mapn[i],getsum(mapn[i]-)+);
}
printf("%d\n",getsum(n));
}
return ;
}
Increasing Speed Limits的更多相关文章
- hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- HDU 3030 - Increasing Speed Limits
Problem Description You were driving along a highway when you got caught by the road police for spee ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- poj 2501 Average Speed
Average Speed Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4842 Accepted: 2168 Des ...
- 使用OpenMP加快OpenCV图像处理性能 | speed up opencv image processing with openmp
本文首发于个人博客https://kezunlin.me/post/7a6ba82e/,欢迎阅读! speed up opencv image processing with openmp Serie ...
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- 2014-2015 ACM-ICPC, NEERC, Moscow Subregional Contest C. CIA Datacenter
C. CIA Datacenter time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- 状态压缩 DP
D - Hie with the Pie Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:65536 ...
- 专题:mdadm Raid & LVM
>FOR FREEDOM!< {A} Introduction Here's a short description of what is supported in the Linux R ...
随机推荐
- Jquery一些常用的方法
整理以前的笔记,在学习JavaScript时候,经常会用到一些方法,但是有时忘掉了具体用法,因此记下.方便以后查阅. 这篇博文先说明这些方法的用途: removeClass().remove().cs ...
- 静态页面如何实现 include 引入公用代码
一直以来,我司的前端都是用 php 的 include 函数来实现引入 header .footer 这些公用代码的,就像下面这样: <!-- index.php --> <!DOC ...
- 《Node.js在CLI下的工程化体系实践》成都OSC源创汇分享总结
背景: 随着开发团队规模不断发展壮大,在人员增加的同时也带来了协作成本的增加,业务项目越来越多,类型也各不相同.常见的类型有组件类.活动类.基于React+redux的业务项目.RN项目.Node.j ...
- Spring学习—生成图片验证码
今天想学下一下验证码的生成,就之前搭建好的一个spring框架上写了一个demo,我会贴出细节代码,但是spring的配置就不在介绍了.需要完整代码可以联系我! 会从前台页面到后台实现完整的讲解: 1 ...
- Linux入门之常用命令(10)软连接 硬链接
在Linux系统中,内核为每一个新创建的文件分配一个Inode(索引结点),每个文件都有一个惟一的inode号.文件属性保存在索引结点里,在访问文件时,索引结点被复制到内存在,从而实现文件的快速访问. ...
- SpringMVC学习笔记(二)
一.导航 复杂类型的参数绑定 校验 异常处理 图片上传 json交互 拦截器 二.复杂类型参数绑定 ①.包装类型的pojo参数绑定 使用场景:实现商品查询条件传入. 实现方法:>通过添加Http ...
- Corn Fields poj3254(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6081 Accepted: 3226 Descr ...
- wpf 制作必输项的*标记
直接引用帮助文档上的话吧,以免下次忘记! AdornedElementPlaceholder 类 .NET Framework 3.5 其他版本 此主题尚未评级 - 评价此主题 更新:20 ...
- pb9常见错误及含义
1. by zero 发生被0除错误 2. Null object reference 空对象引用 3. Array boundary exceeded 数组越界 4. Enumerated v ...
- 自动化双向数据绑定AngularJs---入门
前 言 AngularJS,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中.AngularJS有着诸多特性,最为 ...