Increasing Speed Limits
Increasing Speed Limits |
| Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 186 Accepted Submission(s): 86 |
|
Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.
You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order. Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all! For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list. |
|
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).
Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation. for i = 0 to n-1 Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low. 1 ≤ m ≤ n ≤ 500 000 |
|
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
|
|
Sample Input
2 |
|
Sample Output
Case #1: 15 |
|
Source
2009 Multi-University Training Contest 6 - Host by WHU
|
|
Recommend
gaojie
|
/*
题意:按照题目给出的循环条件:
for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z
求出一个长度为n的序列A,然后求数列A的严格递增的子序列的个数
例如第一组样例,按照循环条件求出的序列为 1,2,1,2,3(不要怀疑,这就是按照循环来求出来的)
递增子序列为:
{1},{2},{1},{2},{3},
{1,2},{1,2},{1,3},{2,3},{1,2},
{1,3},{2,3},{1,2,3},{1,2,3},{1,2,3}. 初步思路:树状数组求递增子序列
*/ #include<bits/stdc++.h>
#define N 500010
#define mod 1000000007
#define lowbit(x) x&(-x)
using namespace std;
struct node
{
int id;
long long w;
bool operator< (const node& b)const{
return w<b.w;
} }s[N];
long long n,m,x,y,z;
long long t;
long long A[N];
long long mapn[N];///用于映射数组,标记元素的id
long long c[N];
int len =;///用于标记去重后的序列长度
long long res=;
void update(int x,int val){
while(x<N){
c[x]+=val;
c[x]%=mod;
x+=lowbit(x);
}
}
long long getsum(int x){
long long res=;
while(x>){
res+=c[x];
res%=mod;
x-=lowbit(x);
}
return res;
}
void init(){
memset(c,,sizeof c);
res=;
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int ca=;ca<=t;ca++){
printf("Case #%d: ",ca);
init();
scanf("%lld%lld%lld%lld%lld",&n,&m,&x,&y,&z);
for(int i=;i<m;i++){
scanf("%lld",&A[i]);
}
for(int i=;i<n;i++){///因为树状数组0这位是处理不到的所以坐标整个向右平移以为
s[i+].w=A[i%m]+;
s[i+].id=i+;
A[i%m]=(x*A[i%m]+y*(i+))%z;
} // for(int i=1;i<=n;i++){
// cout<<s[i].w<<" ";
// }cout<<endl; sort(s+,s+n+);///排好序然后用树状数组进行求最长上升子序列
int cur=;
for(int i=;i<=n;i++){
if(s[i].w==s[i-].w)
mapn[s[i].id]=cur;
else
mapn[s[i].id]=++cur;
} // for(int i=1;i<=n;i++){
// cout<<mapn[s[i]]<<" ";
// }cout<<endl; long long ans=;
for(int i=;i<=n;i++){
update(mapn[i],getsum(mapn[i]-)+);
}
printf("%d\n",getsum(n));
}
return ;
}
Increasing Speed Limits的更多相关文章
- hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- HDU 3030 - Increasing Speed Limits
Problem Description You were driving along a highway when you got caught by the road police for spee ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- poj 2501 Average Speed
Average Speed Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4842 Accepted: 2168 Des ...
- 使用OpenMP加快OpenCV图像处理性能 | speed up opencv image processing with openmp
本文首发于个人博客https://kezunlin.me/post/7a6ba82e/,欢迎阅读! speed up opencv image processing with openmp Serie ...
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- 2014-2015 ACM-ICPC, NEERC, Moscow Subregional Contest C. CIA Datacenter
C. CIA Datacenter time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- 状态压缩 DP
D - Hie with the Pie Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:65536 ...
- 专题:mdadm Raid & LVM
>FOR FREEDOM!< {A} Introduction Here's a short description of what is supported in the Linux R ...
随机推荐
- UI自动化测试(二)浏览器操作及对元素的定位方法(xpath定位和css定位详解)
Selenium下的Webdriver工具支持FireFox(geckodriver). IE(InternetExplorerDriver).Chrome(ChromeDriver). Opera( ...
- 和团队齐头并进——敏捷软件开发的Scrum的学习
敏捷开发的介绍 概念 更强调程序员团队与业务专家之间的紧密协作.面对面的沟通(认为比书面的文档更有效).频繁交付新的软件版本.紧凑而自我组织型的团队.能够很好地适应需求变化的代码编写和团队组织方法,也 ...
- C#仪器数据文件解析-RTF文件
RTF格式文件大家并不陌生,但RTF文件的编码.解码却很难,因为RTF文件是富文本格式的,即文件中除了包含文本内容,还包含文本的格式信息,而这些信息并没有像后来的docx等采用XML来隔离格式和内容, ...
- Java高新技术 JDK1.5之新特性
Java高新技术 JDK1.5的新特性 知识概要: (1)静态导入 (2)可变参数 (3)增强for循环 (4)基本数据类型的自动拆箱和装箱 静态导入 ...
- MVC中View界面数据呈现示例
@using System.Text; @model List<MvcShopping.Models.ProductCategory> @{ ViewBag.Title = "测 ...
- cocos2dx - Sqlite简单封装使用
前言: 一般游戏需要在手机上记录一些简单的信息,用来保存游戏的进度,玩家的分数等.SQLite作为轻量级.跨平台的关系型数据库,相当适合用于游戏数据的存储. 由于没有加密,有安全性问题,数据上还需要自 ...
- Python数据分析(二): Pandas技巧 (1)
第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7 ...
- Scrapy框架--Requests对象
Scrapy使用request对象来爬取web站点. request对象由spiders对象产生,经由Scheduler传送到Downloader,Downloader执行request并返回resp ...
- Microsoft Offce 使用纪事:oneNote笔记本分区删除
OneNote 笔记本和分区删除 OneNote 目前无法在客户端和本地删除已有的笔记本和分区,只能通过OneDrive才能够从云端删除: step1 step2 step3 后记 由于需要登录One ...
- win10 uwp 隐私声明
本文讲的是如何去写隐私声明. 垃圾微软要求几乎每个应用都要有隐私声明,当然如果你不拿用户信息的话,那么用户声明是一个URL,我们应该把应用声明放在哪? 其实我们简单方法是把隐私声明Privacy Po ...