Increasing Speed Limits
Increasing Speed Limits |
| Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 186 Accepted Submission(s): 86 |
|
Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.
You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order. Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all! For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list. |
|
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).
Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation. for i = 0 to n-1 Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low. 1 ≤ m ≤ n ≤ 500 000 |
|
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
|
|
Sample Input
2 |
|
Sample Output
Case #1: 15 |
|
Source
2009 Multi-University Training Contest 6 - Host by WHU
|
|
Recommend
gaojie
|
/*
题意:按照题目给出的循环条件:
for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z
求出一个长度为n的序列A,然后求数列A的严格递增的子序列的个数
例如第一组样例,按照循环条件求出的序列为 1,2,1,2,3(不要怀疑,这就是按照循环来求出来的)
递增子序列为:
{1},{2},{1},{2},{3},
{1,2},{1,2},{1,3},{2,3},{1,2},
{1,3},{2,3},{1,2,3},{1,2,3},{1,2,3}. 初步思路:树状数组求递增子序列
*/ #include<bits/stdc++.h>
#define N 500010
#define mod 1000000007
#define lowbit(x) x&(-x)
using namespace std;
struct node
{
int id;
long long w;
bool operator< (const node& b)const{
return w<b.w;
} }s[N];
long long n,m,x,y,z;
long long t;
long long A[N];
long long mapn[N];///用于映射数组,标记元素的id
long long c[N];
int len =;///用于标记去重后的序列长度
long long res=;
void update(int x,int val){
while(x<N){
c[x]+=val;
c[x]%=mod;
x+=lowbit(x);
}
}
long long getsum(int x){
long long res=;
while(x>){
res+=c[x];
res%=mod;
x-=lowbit(x);
}
return res;
}
void init(){
memset(c,,sizeof c);
res=;
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int ca=;ca<=t;ca++){
printf("Case #%d: ",ca);
init();
scanf("%lld%lld%lld%lld%lld",&n,&m,&x,&y,&z);
for(int i=;i<m;i++){
scanf("%lld",&A[i]);
}
for(int i=;i<n;i++){///因为树状数组0这位是处理不到的所以坐标整个向右平移以为
s[i+].w=A[i%m]+;
s[i+].id=i+;
A[i%m]=(x*A[i%m]+y*(i+))%z;
} // for(int i=1;i<=n;i++){
// cout<<s[i].w<<" ";
// }cout<<endl; sort(s+,s+n+);///排好序然后用树状数组进行求最长上升子序列
int cur=;
for(int i=;i<=n;i++){
if(s[i].w==s[i-].w)
mapn[s[i].id]=cur;
else
mapn[s[i].id]=++cur;
} // for(int i=1;i<=n;i++){
// cout<<mapn[s[i]]<<" ";
// }cout<<endl; long long ans=;
for(int i=;i<=n;i++){
update(mapn[i],getsum(mapn[i]-)+);
}
printf("%d\n",getsum(n));
}
return ;
}
Increasing Speed Limits的更多相关文章
- hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- HDU 3030 - Increasing Speed Limits
Problem Description You were driving along a highway when you got caught by the road police for spee ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- poj 2501 Average Speed
Average Speed Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4842 Accepted: 2168 Des ...
- 使用OpenMP加快OpenCV图像处理性能 | speed up opencv image processing with openmp
本文首发于个人博客https://kezunlin.me/post/7a6ba82e/,欢迎阅读! speed up opencv image processing with openmp Serie ...
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- 2014-2015 ACM-ICPC, NEERC, Moscow Subregional Contest C. CIA Datacenter
C. CIA Datacenter time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- 状态压缩 DP
D - Hie with the Pie Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:65536 ...
- 专题:mdadm Raid & LVM
>FOR FREEDOM!< {A} Introduction Here's a short description of what is supported in the Linux R ...
随机推荐
- 如何保存或读取数据(到android的data目录)利用context获取常见目录可优化代码
读取用户信息 当然这里可以有多种返回值 非硬性
- Hive简记
在大数据工作中难免遇到数据仓库(OLAP)架构,以及通过Hive SQL简化分布式计算的场景.所以想通过这篇博客对Hive使用有一个大致总结,希望道友多多指教! 摘要: 1.Hive安装 2.Hive ...
- [js高手之路] javascript面向对象写法与应用
一.什么是对象? 对象是n个属性和方法组成的集合,如js内置的document, Date, Regexp, Math等等 document就是有很多的属性和方法, 如:getElementById, ...
- jS判断浏览器终端
在做移动端项目的时候,常常会遇到需要判断页面浏览终端的需求.要想判断是什么浏览器终端,先打印 navigator.userAgent 出来.所以收集了几种比较常用的方法: if(/(iPhone|iP ...
- 怎样让PDM图形列表显示name和code等需要的信息
1. 工具(TOOLS)-〉显示参数设置(DISPLAY PREFERENCES) 2. 在弹出来的框中选中Content-〉Table 3. 点右下角那个Advanced 按钮 4. 在弹出的框个选 ...
- 【特效】jquery选项卡插件,页面多个选项卡统一调用
把选项卡整合了一下,写成个插件,这样可以整个站,或整个页面有多个选项卡时,统一调用.代码的具体注意事项已经写进注释了.用于js获取元素的class名称必须有,选项卡本身的样式,另再取一个名字来设置(本 ...
- Java 线程并发
http://www.yesky.com/9/1899009.shtml http://zhidao.baidu.com/link?url=-xZ9JLo5x4bvCSVyXb2XhO6TODnBcU ...
- java基础---java语言概述
一.计算机编程的两种范型 1.面向过程的模型---具有线性执行特点,认为是代码作用于数据. 2.面向对象的模型---围绕它的数据(即对象)和为这个数据定义的接口来组织程序:实际上是用数据控制代码的访问 ...
- win10 uwp 列表模板选择器
本文主要讲ListView等列表可以根据内容不同,使用不同模板的列表模板选择器,DataTemplateSelector. 如果在 UWP 需要定义某些列的显示和其他列不同,或者某些行的显示和其他行不 ...
- MySQL基础函数
MySQL数据库提供了很多函数包括: 数学函数: 字符串函数: 日期和时间函数: 条件判断函数: 系统信息函数: 加密函数: 格式化函数: 一.数学函数 数学函数主要用于处理数字,包括整型.浮点数等. ...