The glmnetUtils package provides a collection of tools to streamline the process of fitting elastic net models with glmnet. I wrote the package after a couple of projects where I found myself writing the same boilerplate code to convert a data frame into a predictor matrix and a response vector. In addition to providing a formula interface, it also has a function (cvAlpha.glmnet) to do crossvalidation for both elastic net parameters α and λ, as well as some utility functions.

The formula interface

The interface that glmnetUtils provides is very much the same as for most modelling functions in R. To fit a model, you provide a formula and data frame. You can also provide any arguments that glmnet will accept. Here is a simple example:

mtcarsMod <- glmnet(mpg ~ cyl + disp + hp, data=mtcars)

## Call:
## glmnet.formula(formula = mpg ~ cyl + disp + hp, data = mtcars)
##
## Model fitting options:
## Sparse model matrix: FALSE
## Use model.frame: FALSE
## Alpha: 1
## Lambda summary:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03326 0.11690 0.41000 1.02800 1.44100 5.05500

Under the hood, glmnetUtils creates a model matrix and response vector, and passes them to the glmnet package to do the actual model fitting. Prediction also works as you'd expect: just pass a data frame containing the new observations, along with any arguments thatpredict.glmnet needs.

# least squares regression: get predictions for lambda=1
predict(mtcarsMod, newdata=mtcars, s=1)

Building the model matrix

You may have noticed the options "use model.frame" and "sparse model matrix" in the printed output above. glmnetUtils includes a couple of options to improve performance, especially on wide datasets and/or have many categorical (factor) variables.

The standard R method for creating a model matrix out of a data frame uses the model.framefunction, which has a major disadvantage when it comes to wide data. It generates a termsobject, which specifies how the original columns of data relate to the columns in the model matrix. This involves creating and storing a (roughly) square matrix of size p × p, where p is the number of variables in the model. When p > 10000, which isn't uncommon these days, the terms object can exceed a gigabyte in size. Even if there is enough memory to store the object, processing it can be very slow.

Another issue with the standard approach is the treatment of factors. Normally, model.matrixwill turn an N-level factor into an indicator matrix with N−1 columns, with one column being dropped. This is necessary for unregularised models as fit with lm and glm, since the full set of Ncolumns is linearly dependent. However, this may not be appropriate for a regularised model as fit with glmnet. The regularisation procedure shrinks the coefficients towards zero, which forces the estimated differences from the baseline to be smaller. But this only makes sense if the baseline level was chosen beforehand, or is otherwise meaningful as a default; otherwise it is effectively making the levels more similar to an arbitrarily chosen level.

To deal with these problems, glmnetUtils by default will avoid using model.frame, instead building up the model matrix term-by-term. This avoids the memory cost of creating a terms object, and can be much faster than the standard approach. It will also include one column in the model matrix for all levels in a factor; that is, no baseline level is assumed. In this situation, the coefficients represent differences from the overall mean response, and shrinking them to zero is meaningful (usually). Machine learners may also recognise this as one-hot encoding.

glmnetUtils can also generate a sparse model matrix, using the sparse.model.matrix function provided in the Matrix package. This works exactly the same as a regular model matrix, but takes up significantly less memory if many of its entries are zero. A scenario where this is the case would be where many of the predictors are factors, each with a large number of levels.

Crossvalidation for α

One piece missing from the standard glmnet package is a way of choosing α, the elastic net mixing parameter, similar to how cv.glmnet chooses λ, the shrinkage parameter. To fix this, glmnetUtils provides the cvAlpha.glmnet function, which uses crossvalidation to examine the impact on the model of changing α and λ. The interface is the same as for the other functions:

# Leukemia dataset from Trevor Hastie's website:
# http://web.stanford.edu/~hastie/glmnet/glmnetData/Leukemia.RData
load("~/Leukemia.rdata")
leuk <- do.call(data.frame, Leukemia) cvAlpha.glmnet(y ~ ., data=leuk, family="binomial") ## Call:
## cvAlpha.glmnet.formula(formula = y ~ ., data = leuk, family = "binomial")
##
## Model fitting options:
## Sparse model matrix: FALSE
## Use model.frame: FALSE
## Alpha values: 0 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1
## Number of crossvalidation folds for lambda: 10

cvAlpha.glmnet uses the algorithm described in the help for cv.glmnet, which is to fix the distribution of observations across folds and then call cv.glmnet in a loop with different values of α. Optionally, you can parallelise this outer loop, by setting the outerParallel argument to a non-NULL value. Currently, glmnetUtils supports the following methods of parallelisation:

  • Via parLapply in the parallel package. To use this, set outerParallel to a valid cluster object created bymakeCluster.
  • Via rxExec as supplied by Microsoft R Server’s RevoScaleR package. To use this, setouterParallel to a valid compute context created by RxComputeContext, or a character string specifying such a context.

Conclusion

The glmnetUtils package is a way to improve quality of life for users of glmnet. As with many R packages, it’s always under development; you can get the latest version from my GitHub repo. The easiest way to install it is via devtools:

library(devtools)
install_github("hong-revo/glmnetUtils")

A more detailed version of this post can also be found at the package vignette. If you find a bug, or if you want to suggest improvements to the package, please feel free to contact me athongooi@microsoft.com.

转自:http://blog.revolutionanalytics.com/2016/11/glmnetutils.html

glmnetUtils: quality of life enhancements for elastic net regression with glmnet的更多相关文章

  1. wlan的QOS配置

    WLAN QoS配置 1.1  WLAN QoS简介 802.11网络提供了基于竞争的无线接入服务,但是不同的应用需求对于网络的要求是不同的,而原始的网络不能为不同的应用提供不同质量的接入服务,所以已 ...

  2. L1和L2特征的适用场景

    How to decide which regularization (L1 or L2) to use? Is there collinearity among some features? L2 ...

  3. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  4. Kaggle实战之一回归问题

    0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题 ...

  5. Google云平台使用方法 | Hail | GWAS | 分布式回归 | LASSO

    参考: Hail Hail - Tutorial  windows也可以安装:Spark在Windows下的环境搭建 spark-2.2.0-bin-hadoop2.7 - Hail依赖的平台,并行处 ...

  6. Overfitting & Regularization

    Overfitting & Regularization The Problem of overfitting A common issue in machine learning or ma ...

  7. stacking method house price in kaggle top10%

    整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...

  8. Java Programming Language Enhancements

    引用:Java Programming Language Enhancements Java Programming Language Enhancements Enhancements in Jav ...

  9. EasyMesh - A Two-Dimensional Quality Mesh Generator

    EasyMesh - A Two-Dimensional Quality Mesh Generator eryar@163.com Abstract. EasyMesh is developed by ...

随机推荐

  1. dotNet的体系结构介绍

    一.公共语言运行库 .NET Framework 的核心是其运行库执行环境,称为Common Language Run,通常在CLR控制下运行的代码称为托管代码(由GC进行资源管理和回收),还有一部分 ...

  2. mac下安装git,并将本地的项目上传到github

    mac下安装git 安装过程: 1.下载Git installer http://git-scm.com/downloads 2.下载之后打开,双击.pkg安装 3.打开终端,使用git --vers ...

  3. Cookie中文乱码问题

    页面一登录,页面二保存用户信息,放入Cookies里. 但是Cookies放入中文会引起编码问题,如报错“Control character in cookie value, consider BAS ...

  4. 文本处理sed常用操作

    文本处理sed常用操作 linux sed (stream editor) is a Unix utility that parses and transforms text, using a sim ...

  5. IOS 私有变量 私有属性的书写方法

    一.早期只能定义在.h文件中.用@private 关键字来定义私有变量. @interface ViewController{ @private Bool _isBool; } @end 二.允许在. ...

  6. 在 Intellij 中设置集成 Jenkins 服务器连接

    如何在 Intellij 中设置集成 Jenkins 服务器连接 在Intellij中可以很方便的设置Jenkins服务器,不用登录到浏览器中,在Intellij中即可浏览所有job,开发plugin ...

  7. Eclipse 中 Java 项目中 .settings 文件夹作用

    今天工作时,因对 .settings 文件夹误操作,耗时 6 个多小时,才了解到原因就出在 .settings 文件夹.经查阅资料,对 .settings 做如下整理: 就如setting这个名字,就 ...

  8. [转]DevExpress GridControl 关于使用CardView的一点小结

    最近项目里需要显示商品的一系列图片,打算用CardView来显示,由于第一次使用,遇到许多问题,发现网上这方面的资源很少,所以把自己的一点点实际经验小结一下,供自己和大家以后参考. 1.选择CardV ...

  9. GoldenGate实施步骤

    一.GoldenGate实施环境 source database:oracle 11.2.0.3 target  database:oracle 11.2.0.3 需要配置的进程如下: source ...

  10. bzoj4826 [Hnoi2017]影魔

    Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵 ...