I had started a “52 Vis” initiative back in 2016 to encourage folks to get practice making visualizations since that’s the only way to get better at virtually anything. Life got crazy, 52 Vis fell to the wayside and now there are more visible alternatives such as Makeover Mondayand Workout Wednesday. They’re geared towards the “T” crowd (I’m not giving a closed source and locked-in-data product any more marketing than two links) but that doesn’t mean R, Python or other open-tool/open-data communities can’t join in for the ride and learning experience.

This week’s workout is a challenge to reproduce or improve upon a chart by Matt Stiles. You should go to both (give them the clicks and eyeballs they both deserve since they did great work). They both chose a line chart, but the whole point of these exercises is to try out new things to help you learn how to communicate better. I chose to use geom_segment() to make mini-column charts since that:

  • eliminates the giant rose-coloured rectangles that end up everywhere
  • helps show the differences a bit better (IMO), and
  • also helps highlight some of the states that have had more difficulties than others

Click/tap to “embiggen”. I kept the same dimensions that Andy did but unlike Matt’s creation this is a plain ol’ PNG as I didn’t want to deal with web fonts (I’m on a Museo Sans Condensed kick at the moment but don’t have it in my TypeKit config yet). I went with official annual unemployment numbers as they may be calculated/adjusted differently (I didn’t check, but I knew that data source existed, so I used it).

One reason I’m doing this is a quote on the Workout Wednesday post:

This will be a very tedious exercise. To provide some context, this took me 2-3 hours to create. Don’t get discouraged and don’t feel like you have to do it all in one sitting. Basically, try to make yours look identical to mine.

This took me 10 minutes to create in R:

#' ---
#' output:
#' html_document:
#' keep_md: true
#' ---
#+ message=FALSE
library(ggplot2)
library(hrbrmisc)
library(readxl)
library(tidyverse) # Use official BLS annual unemployment data vs manually calculating the average
# Source: https://data.bls.gov/timeseries/LNU04000000?years_option=all_years&periods_option=specific_periods&periods=Annual+Data
read_excel("~/Data/annual.xlsx", skip=10) %>%
mutate(Year=as.character(as.integer(Year)), Annual=Annual/100) -> annual_rate # The data source Andy Kriebel curated for you/us: https://1drv.ms/x/s!AhZVJtXF2-tD1UVEK7gYn2vN5Hxn #ty Andy!
read_excel("~/Data/staadata.xlsx") %>%
left_join(annual_rate) %>%
filter(State != "District of Columbia") %>%
mutate(
year = as.Date(sprintf("%s-01-01", Year)),
pct = (Unemployed / `Civilian Labor Force Population`),
us_diff = -(Annual-pct),
col = ifelse(us_diff<0,
"Better than U.S. National Average",
"Worse than U.S. National Average")
) -> df credits <- "Notes: Excludes the District of Columbia. 2016 figure represents October rate.\nData: U.S. Bureau of Labor Statistics <https://www.bls.gov/lau/staadata.txt>\nCredit: Matt Stiles/The Daily Viz <thedailyviz.com>" #+ state_of_us, fig.height=21.5, fig.width=8.75, fig.retina=2
ggplot(df, aes(year, us_diff, group=State)) +
geom_segment(aes(xend=year, yend=0, color=col), size=0.5) +
scale_x_date(expand=c(0,0), date_labels="'%y") +
scale_y_continuous(expand=c(0,0), label=scales::percent, limit=c(-0.09, 0.09)) +
scale_color_manual(name=NULL, expand=c(0,0),
values=c(`Better than U.S. National Average`="#4575b4",
`Worse than U.S. National Average`="#d73027")) +
facet_wrap(~State, ncol=5, scales="free_x") +
labs(x=NULL, y=NULL, title="The State of U.S. Jobs: 1976-2016",
subtitle="Percentage points below or above the national unemployment rate, by state. Negative values represent unemployment rates\nthat were lower — or better, from a jobs perspective — than the national rate.",
caption=credits) +
theme_hrbrmstr_msc(grid="Y", strip_text_size=9) +
theme(panel.background=element_rect(color="#00000000", fill="#f0f0f055")) +
theme(panel.spacing=unit(0.5, "lines")) +
theme(plot.subtitle=element_text(family="MuseoSansCond-300")) +
theme(legend.position="top")

Swap out ~/Data for where you stored the files.

The “weird” looking comments enable me to spin the script and is pretty much just the inverse markup for knitr R Markdown documents. As the comments say, you should really thank Andy for curating the BLS data for you/us.

If I really didn’t pine over aesthetics it would have taken me 5 minutes (most of that was waiting for re-rendering). Formatting the blog post took much longer. Plus, I can update the data source and re-run this in the future without clicking anything. This re-emphasizes a caution I tell my students: beware of dragon droppings (“drag-and-drop data science/visualization tools”).

Hopefully you presently follow or will start following Workout Wednesday and Makeover Monday and dedicate some time to hone your skills with those visualization katas.

转自:https://rud.is/b/2017/01/18/workout-wednesday-redux-2017-week-3/

Workout Wednesday Redux (2017 Week 3)的更多相关文章

  1. January 25 2017 Week 4 Wednesday

    In every triumph, there's a lot of try. 每个胜利背后都有许多尝试. There's a lot of try behind every success, and ...

  2. November 15th, 2017 Week 46th Wednesday

    Of all the tribulations in this world, boredom is the one most hard to bear. 所有的苦难中,无聊是最难以忍受的. When ...

  3. November 08th, 2017 Week 45th Wednesday

    Keep your face to the sunshine and you cannot see the shadow. 始终面朝阳光,我们就不会看到黑暗. I love sunshine, but ...

  4. November 01st, 2017 Week 44th Wednesday

    People always want to lead an active life, and is not it? 人们总要乐观生活,不是吗? Be active, and walk towards ...

  5. October 25th, 2017 Week 43rd Wednesday

    Perseverance is not a long race; it is many short races one after another. 坚持不是一个长跑,她是很多一个接一个的短跑. To ...

  6. October 18th 2017 Week 42nd Wednesday

    Only someone who is well-prepared has the opportunity to improvise. 只有准备充分的人才能够尽兴表演. From the first ...

  7. October 11th 2017 Week 41st Wednesday

    If you don't know where you are going, you might not get there. 如果你不知道自己要去哪里,你可能永远到不了那里. The reward ...

  8. October 04th 2017 Week 40th Wednesday

    We teach people how to remember, we never teach them how to grow. 我们教会人们如何记忆,却从来不教他们如何成长. Without pr ...

  9. September 27th 2017 Week 39th Wednesday

    We both look up at the same stars, yet we see such different things. 我们仰望同一片星空,却看见了不同的事物. Looking up ...

随机推荐

  1. 关于C++ 循环

    有的时分,可能需求屡次履行同一块代码.通常情况下,句子是顺序履行的:函数中的第一个句子先履行,接着是第二个句子,依此类推. 编程言语供给了答应更为杂乱的履行途径的多种操控结构. 循环句子答应咱们屡次履 ...

  2. 数据泵 TTS(传输表空间技术)

    1.源库准备环境 --创建被传输的表空间create tablespace tts logging datafile '/home/oracle/app/oradata/orcl/tts01.dbf' ...

  3. node.js 中模块的循环调用问题详解

    首先,我们看一下图示代码,每一个注释其实代表一个 js 文件.所以下面其实是三个 js 文件 .第一个是我们要运行的 main 文件,后面两个是 a, b 文件.   从上面可以看书 a ,b 两个模 ...

  4. JavaEE开发之SpringMVC中的路由配置及参数传递详解

    在之前我们使用Swift的Perfect框架来开发服务端程序时,聊到了Perfect中的路由配置.而在SpringMVC中的路由配置与其也是大同小异的.说到路由,其实就是将URL映射到Java的具体类 ...

  5. Bitbucket导入项目

    1.先初始化git本地仓库(如果已经受git管理跳过此步) $ git init 2.添加远程仓库 $ git remote add origin git@bitbucket.org:name/rep ...

  6. 从JDBC到hibernate再到mybatis之路

    一.传统的JDBC编程 在java开发中,以前都是通过JDBC(Java Data Base Connectivity)与数据库打交道的,至少在ORM(Object Relational Mappin ...

  7. YARN资源调度策略之Capacity Scheduler

    背景 yarn默认使用的是最简单的FIFO调度器,即一个default队列,所有用户共享,分配资源也是先到先得,没有优先级之分.有时一两个任务就把资源全占了,其他任务吃不到资源造成饥饿,显然这样的资源 ...

  8. 详解全站 HTTPS 访问优化

    HTTPS 协议就是 HTTP+SSL/TLS,即在 HTTP 基础上加入 SSL /TLS 层,提供了内容加密.身份认证和数据完整性3大功能,目的就是为了加密数据,用于安全的数据传输. HTTPS ...

  9. TreeSet小练习

    package 练习.test1; import java.util.Iterator; import java.util.TreeSet; /* 需求:将字符串中的数值进行排序. 例如String ...

  10. Oracle12c多租户CDB 与 PDB 参数文件位置探讨、查询 CDB 与 PDB 不同值的参数

    一. Oracle12c多租户CDB 与 PDB 参数文件位置CDB的参数文件依然使用12c以前的SPIFLE,pdb的参数文件不会出现在SPFILE中,而是直接从CDB中继承,如果PDB中有priv ...