51nod_1677:treecnt
题目是求一棵n节点树中对于C(n,k)颗子树,每棵子树为在n个节点中选不同的k个节点作为树的边界点,这样的所有子树共包含多少条边。
问题可以转化一下,对每一条边,不同的子树中可能包含可能不包含这条边,显然,只有子树那k个节点在该边的两侧均有分布时该边才被包含在子树中。所有边的被包含次数的和,即为answer。对于一条边的被包含次数,设该边两侧分别有a,b个节点,那么,该边被包含的次数为C(a+b,k)-C(a,k)-C(b,k)(也可以借助母函数函数求C(a,i)*C(b,k-i),i从1到min{a,b,k-1},结果一样)。
//dfs写的太搓了,调了半天才好。。。
#include<bits/stdc++.h>
using namespace std; typedef long long LL;
const LL mod=1e9+;
const LL M=1e5+; LL fac[]; //阶乘
LL inv_of_fac[]; //阶乘的逆元 LL qpow(LL x,LL n)
{
LL ret=;
for(; n; n>>=)
{
if(n&) ret=ret*x%mod;
x=x*x%mod;
}
return ret;
}
void init()
{
fac[]=;
for(int i=; i<=M; i++)
fac[i]=fac[i-]*i%mod;
inv_of_fac[M]=qpow(fac[M],mod-);
for(int i=M-; i>=; i--)
inv_of_fac[i]=inv_of_fac[i+]*(i+)%mod;
}
LL C(LL a,LL b)
{
if(b>a) return ;
if(b==) return ;
return fac[a]*inv_of_fac[b]%mod*inv_of_fac[a-b]%mod;
}
/////////////////////////////////////////////////////////////
vector<int> adj[M];
int vis[M];
LL n,k,ans,du[M],hh;
void init1()
{
ans=;
memset(vis,,sizeof(vis));
memset(du,,sizeof(du));
du[]=n;
hh=C(n,k);
for(int i=; i<=n; i++)
adj[i].clear();
}
LL dfs(int s)
{
if(adj[s].size()==&&s!=) return du[s]=;
if(du[s]&&s!=) return du[s];
vis[s]=;
LL ret,cnt=;
for(int i=; i<adj[s].size(); i++)
{
if(!vis[adj[s][i]])
{
// printf("%d -> %d\n",s,adj[s][i]);
cnt+=dfs(adj[s][i]);
ans=(ans+hh-C(dfs(adj[s][i]),k)-C(n-dfs(adj[s][i]),k))%mod;
}
}
return du[s]=cnt+;
} int main()
{
init();
while(~scanf("%lld%lld",&n,&k))
{
init1();
for(int i=; i<n; i++)
{
LL u,v;
scanf("%d%d",&u,&v);
adj[u].push_back(v);
adj[v].push_back(u);
}
dfs();
// for(int i=1; i<=n; i++)
// printf("%d:%lld=========\n",i,du[i]);
// for(int i=1; i<=n; i++)
// {
// printf("i=%d:\n",i);
// for(int j=0; j<adj[i].size(); j++)
// printf("%d ",adj[i][j]);
// puts("");
// }
printf("%lld\n",(ans+mod)%mod);
}
}
// 2017.8.15 更
回头翻一下之前自己写的博客,发现连个dfs都写这么挫,就算这样居然也有人看。重新改了一下代码贴在下面。
#include<bits/stdc++.h>
using namespace std; typedef long long LL;
const LL mod=1e9+;
const LL M=1e5+; LL fac[M+]; //阶乘
LL inv_of_fac[M+]; //阶乘的逆元 LL qpow(LL x,LL n)
{
LL ret=;
for(; n; n>>=)
{
if(n&) ret=ret*x%mod;
x=x*x%mod;
}
return ret;
}
void init()
{
fac[]=;
for(int i=; i<=M; i++)
fac[i]=fac[i-]*i%mod;
inv_of_fac[M]=qpow(fac[M],mod-);
for(int i=M-; i>=; i--)
inv_of_fac[i]=inv_of_fac[i+]*(i+)%mod;
}
LL C(LL a,LL b)
{
if(b>a) return ;
if(b==) return ;
return fac[a]*inv_of_fac[b]%mod*inv_of_fac[a-b]%mod;
}
/////////////////////////////////////////////////////////////
vector<int> adj[M];
LL n,k,ans,hh;
void init1()
{
ans=;
hh=C(n,k);
for(int i=; i<=n; i++)
adj[i].clear();
} LL dfs(int s,int pre)
{
LL ret=;
for(int i=; i<adj[s].size(); i++)
{
if(adj[s][i]==pre) continue;
LL t=dfs(adj[s][i],s);
ret+=t;
ans=(ans+hh-C(t,k)-C(n-t,k))%mod;
}
return ret;
} int main()
{
init();
while(~scanf("%lld%lld",&n,&k))
{
init1();
for(int i=; i<n; i++)
{
LL u,v;
scanf("%d%d",&u,&v);
adj[u].push_back(v);
adj[v].push_back(u);
}
dfs(,-);
printf("%lld\n",(ans+mod)%mod);
}
}
51nod_1677:treecnt的更多相关文章
- treecnt
treecnt ﹡ LH (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择 ...
- 树上统计treecnt(dsu on tree 并查集 正难则反)
题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...
- [洛谷U40581]树上统计treecnt
[洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边 ...
- 1677 treecnt(贡献)
1677 treecnt 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联 ...
- treecnt 算法马拉松20(告别美国大选及卡斯特罗)
treecnt 基准时间限制:1 秒 空间限制:131072 KB 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算 ...
- 51Nod 1677 treecnt
一道比较基础的计数题,还是一个常用的单独计算贡献的例子. 首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写. 那我们就来想\(O(n)\)的吧,我们单独考虑每 ...
- 51nod 1677 treecnt(思维)
题意: 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k个点的情况最小选择边数的总和为多少. 考虑每条 ...
- 【51nod1677】treecnt(树上数学题)
点此看题面 大致题意: 给你一个节点从1~n编号的树,让你从中选择k个节点并通过选择的边联通,且要使选择的边数最少,让你计算对于所有选择k个节点的情况最小选择边数的总和. 题解 这道题乍一看很麻烦:最 ...
- 【计数】51nod1677 treecnt
要将答案看做是小问题的贡献和 Description 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k ...
随机推荐
- python基础操作_文件读写操作
#文件读写# r只能读不能写,且文件必须存在,w只能写不能读,a只能写不能读# w+是写读模式,清空原文件内容# r+是读写模式,没有清空原文件内容,# 只要有r,文件必须存在,只要有w,都会清空原文 ...
- .NET和JAVA 反射对比
反射是一个程序集发现及运行的过程,通过反射可以得到*.exe或*.dll等程序集内部的信息.使用反射可以看到一个程序集内部的接口.类.方法.字段.属性.特性等等信息.在System.Reflectio ...
- 【PHP】最详细PHP从入门到精通(三)——PHP中的数组常用函数汇总
PHP从入门到精通 之PHP中的数组常用函数详解 数组作为PHP中最常用的结构之一,PHP强大的数组函数功能,给数组的相关操作带来了极大的便利.今天给大家介绍的PHP中数组函数,是PHP数组中重要的 ...
- Realm的一对多配置以及版本兼容
前言:本篇博客将介绍Realm的一些高级用法,基本使用在这里 一.配置一对多关系 // // Teacher.h #import <Realm/Realm.h> #import " ...
- scrapy代理的设置
scrapy代理的设置 在我的上一篇文章介绍了scrapy下载器中间件的使用,这里的scrapyIP的代理就是用这个原理实现的,重写了下载器中间件的process_request(self,reque ...
- Apache和PHP环境配置
最近闲来想学习一下PHP. 工欲善其事,必先利其器.我的PHP环境配置了三遍,才安装成功. 下面就分享一下我的安装经验. 1.Apache2.4,PHP5.6,MySql5.6这些都是从官网下载的. ...
- 实现简易版的moment.js
github源码地址: www.baidu.com 作者: 易怜白 项目中使用了时间日期的处理方法,只使用了部分方法,为了不在引入第三方的库(moment.js),这里自己封装了项目中使用到的方法. ...
- 字符串数组与字符串之间的互转(join/split)
1.Java 1-1.字符串数组=>字符串:StringUtils: join(Object[] array, String separator) 例: Java代码 收藏代码 import o ...
- Sqlserver2005 破解版下载地址
Sqlserver2005 破解版下载地址:http://www.xiaidown.com/soft/from/1583.html
- 警惕System.Environment.CurrentDirectory 获取当前目录
最近工作中,要做个客户端提醒的小工具:winform程序自然少不了要读取和应用程序同一个目录的配置文件(不是exe.config文件): 要读取当前应用程序所在目录我立马想到了System.Envir ...