描述

最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了!

但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A、B、C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的)。

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为1个整数N,表示小Hi拥有的城市数量。

接下来的N行,为一个N*N的矩阵A,描述任意两座城市之间建造道路所需要的费用,其中第i行第j个数为Aij,表示第i座城市和第j座城市之间建造道路所需要的费用。

对于100%的数据,满足N<=10^3,对于任意i,满足Aii=0,对于任意i, j满足Aij=Aji, 0&ltAij&lt10^4.

输出

对于每组测试数据,输出1个整数Ans,表示为了使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用。

Sample Input

5
0 1005 6963 392 1182
1005 0 1599 4213 1451
6963 1599 0 9780 2789
392 4213 9780 0 5236
1182 1451 2789 5236 0

Sample Output

4178
题意描述:
输入城市的个数及N*N的矩阵
计算并输出使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用
解题思路:
典型的求最小生成树,根据数据的格式,使用Prim算法即可。Prim算法主要的思路就是每次选择距离生成树最近的结点添加,再更新新结点到尚未加入到树的各个结点的距离,便于下次查找距离生成树最近的结点。
代码实现:
 #include<stdio.h>
#include<string.h>
int e[][],book[],dis[];
const int inf=;
int main()
{
int n,i,j,k,c,sum,min;
while(scanf("%d",&n) != EOF)
{
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&e[i][j]);
for(i=;i<=n;i++)
dis[i]=e[][i]; memset(book,,sizeof(book));
book[]=;
c=;
sum=;
while(c < n)
{
min=inf;
for(j=,i=;i<=n;i++)
{
if(!book[i] && dis[i] < min)//注意是且的关系
{
min=dis[i];
j=i;
}
}
book[j]=;
c++;
sum += dis[j];
for(k=;k<=n;k++)
{
if(!book[k] && dis[k] > e[j][k])
dis[k]=e[j][k];
}
}
printf("%d\n",sum);
}
return ;
}

易错分析:

1、注意在寻找距离生成树最近的结点时,判断条件是且

最小生成树之Prim算法的更多相关文章

  1. C++编程练习(10)----“图的最小生成树“(Prim算法、Kruskal算法)

    1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数 ...

  2. 最小生成树一·Prim算法

    描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道 ...

  3. 数据结构与算法--最小生成树之Prim算法

    数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图 ...

  4. 24最小生成树之Prim算法

    最小生成树的Prim算法 思想:采用子树延伸法 将顶点分成两类: 生长点——已经在生成树上的顶点 非生长点——未长到生成树上的顶点 使用待选边表: 每个非生长点在待选边表中有一条待选边,一端连着非生长 ...

  5. 最小生成树的Prim算法

       构造最小生成树的Prim算法    假设G=(V,E)为一连通网,其中V为网中所有顶点的集合,E为网中所有带权边的集合.设置两个新的集合U和T,其中集合U用于存放G的最小生成树的顶点,集合T用于 ...

  6. hihocoder 1097 最小生成树一·Prim算法

    #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...

  7. 算法学习记录-图——最小生成树之prim算法

    一个连通图的生成树是一个极小的连通子图,它包含图中全部的顶点(n个顶点),但只有n-1条边. 最小生成树:构造连通网的最小代价(最小权值)生成树. prim算法在严蔚敏树上有解释,但是都是数学语言,很 ...

  8. Hihocoder 之 #1097 : 最小生成树一·Prim算法 (用vector二维 模拟邻接表,进行prim()生成树算法, *【模板】)

    #1097 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可 ...

  9. hihocoder hiho一下 第二十六周 最小生成树一·(Prim算法)

    题目1 : 最小生成树一·Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥 ...

  10. 无向图最小生成树(prim算法)

    普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...

随机推荐

  1. 我知道你不知道的负Margin

    现如今,负margin技术的应用可谓越来越广,任一个大型站点惊鸿一瞥之下都会有其身影所在.个人认为负margin技术是学习css路上必不可缺少的课题之一,许多高级应用及疑难杂症修复都可以使用负marg ...

  2. 关于vs2010下水晶报表的使用入门

    关于vs2010下使用水晶报表了解情况记录如下: 1.首先vs2010不再自带水晶报表控件了,需要下载安装vs2010配套的水晶报表控件:CRforVS_13_0.这个控件安装很简单,基本上都选择默认 ...

  3. Xamarin.android 重写axml控件

    https://www.cnblogs.com/lonelyxmas/p/5632694.html <Laco: 用来用引指定的控件            android:layout_widt ...

  4. 如何实现虚拟机(VirtualBox)中的Ubuntu与Windows XP间的数据共享

    环境: 主机是Windows XP系统 虚拟机与Ubuntu的版本分别为: VirtualBox-3.2.12-68302-Win ubuntu-10.10-desktop-i386 前提:已安装Vi ...

  5. 学习整理与细化(2)——HTML VS XHTML

    <html> <head>//文档头 <title>webpage title</title> </head> <body>// ...

  6. 每天学一点Docker(5)——了解Docker架构

    Docker的核心组件: 1.Docker客户端 - Client 2.Docker服务器 - Docker deamon 3.Docker镜像 - Image 4.仓库 - Registry 5.D ...

  7. Runtime那些事

    Runtime 前言 从字面意思看,就是运行时.但是这个运行时究竟什么意思?可以把它理解成:不是在编译期也不是在链接期,而是在运行时.那究竟在运行期间做了什么呢?按照苹果官方的说法,就是把一些决策(方 ...

  8. IIFF(立即执行函数表达式)

    立即执行函数表达式(Immediately-invoked function expression,IIFF) 在javascript(ES5)中,是没有块级作用域的概念的 for (var i = ...

  9. TPYBoard—MicroPython开发板免费试用!你最想抱走哪款?

    TPYBoard开发板自上市开售以来,受到了广大硬件及MicroPython爱好者的一致好评,许多人提出想试用开发板的申请.为此,TPYBoard特推出多款开发板免费试用活动,感兴趣的朋友抓紧申请吧! ...

  10. 多行文字水平垂直居中在div

    <BODY>   <div class="box">    <h3>1.单行文字居中</h3>    <!--设置行高来实现- ...