Maximum Score

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83008#problem/J

Description

Ron likes to play with integers. Recently he is interested in a game where some integers are given and he is allowed to permute them. His point will be calculated from the permutation made by him. Ron knows that he will get as many candies as his point, so he wants to permute the numbers to maximize his point.
Say, Ron has got n integers {x1, x2, . . . , xn} and (xi1, xi2, . . . , xin) is the permutation made by him. His point will be the sum of the score of all integers. The score of an individual number xiw in that permutation is calculated by the length of the longest subsequence (Let us consider xj1, xj2, …, xjm as the subsequence where 1 ≤ j1 < j2 < . . . < jm ≤ n) you can form with the following constraints:
1. There exists an integer k such that 1 ≤ k ≤ m and jk = iw.
2. xj1 ≤ xj2 ≤ . . . ≤ xjk−1 ≤ xjk ≥ xjk+1 ≥ . . . ≥ xjm−1 ≥ xjm.
Therefore, the score of xiw in that permutation will be m. Say, (1, 4, 3) is a permutation made by Ron using the numbers {1, 3, 4}. For this permutation, score of 1 is 1 with subsequence (1), score of 4 is 3 with subsequence (1, 4, 3) and score of 3 is 2 with subsequence (1, 3). So, Ron’s point is 6 for this permutation.
Ron is not sure how to achieve the maximum point and he is also wondering about the number of different permutations which generate that maximum value of point. You need to help Ron to calculate these two values. A permutation (x1, x2, . . . , xn) is different from another permutation (y1, y2, . . . , yn) if there exists an integer i such that 1 ≤ i ≤ n and xi is not equal to yi
.

Input

The first line of input contains a single integer T (1 ≤ T ≤ 200), which denotes the number of test cases to follow. For each test case, there will be two lines of input. The first line contains a single integer, p (1 ≤ p ≤ 105 ). The second line contains p pairs of integers. In each pair, there are two integers vi and fi (1 ≤ vi , fi ≤ 105 ) which indicate that the value vi is present fi times among the given numbers.
Therefore, f1 + f2 + . . . + fp = n, where n is the total number of integers given to Ron. All the values of vi will be distinct.

Output

For each case, in a separate line, print the case number and the maximum sum of scores and the number of permutations to achieve that sum of scores. As the number of permutations can be quite large, print it modulo 1000000007 (109 + 7). Follow Sample Input and Output for details. The value of the maximum sum of scores will fit in 64-bit unsigned integer.

Sample Input

2
2
121 1 22 1
2
71 2 35 1

Sample Output

Case 1: 3 2
Case 2: 7 2

HINT

题意

一个数的分数的定义,就是以这个点能够往左右延生多长,不一定要连续!

题解:

第一问很简单,随便想想就出来了

第二问比较麻烦,首先我们先把最小的扔在那儿,然后我们插空法就吼了,注意,最大的数一定得挨在一起,掌握这个观点就好了

代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 2000001
#define mod 1000000007
#define eps 1e-9
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** pair<ll,ll> P[maxn];
int main()
{
//test;
int t;
cin>>t;
for(int cas=;cas<=t;cas++)
{
memset(P,,sizeof(P));
int p=read();
for(int i=;i<p;i++)
cin>>P[i].first>>P[i].second;
sort(P,P+p);
unsigned long long ans=,ans2=;
unsigned long long sum=;
for(int i=;i<p;i++)
{
sum+=P[i].second;
if(i!=p-)
{
ans2=(ans2*(P[i].second+));
if(ans2>mod)
ans2%=mod;
}
ans+=P[i].second*sum;
}
printf("Case %d: %llu %llu\n",cas,ans,ans2%mod);
}
}

UVA 12906 Maximum Score 排列组合的更多相关文章

  1. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  2. UVA12906 Maximum Score (组合)

    对于每个元素,最理想的情况就是都在它的左边或者右边,那么sort一下就可以得到一个特解了,然后大的中间不能有小的元素,因为如果有的话,那么无论选小的还是选大的都不是最优.对小的元素来说,比它大的元素在 ...

  3. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

  4. UVa Problem 10132 File Fragmentation (文件还原) 排列组合+暴力

    题目说每个相同文件(01串)都被撕裂成两部分,要求拼凑成原来的样子,如果有多种可能输出一种. 我标题写着排列组合,其实不是什么高深的数学题,只要把最长的那几个和最短的那几个凑一起,然后去用其他几个验证 ...

  5. UVa 12712 && UVaLive 6653 Pattern Locker (排列组合)

    题意:给定 一个n * n 的宫格,就是图案解锁,然后问你在区间 [l, r] 内的所有的个数进行组合,有多少种. 析:本来以为是数位DP,后来仔细一想是排列组合,因为怎么组合都行,不用考虑实际要考虑 ...

  6. HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)

    Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  8. 【leetcode】1255. Maximum Score Words Formed by Letters

    题目如下: Given a list of words, list of  single letters (might be repeating) and score of every charact ...

  9. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

随机推荐

  1. Linux基本命令(6)线上查询的命令

    线上查询的命令 命令 功能 man 查询和解释一个命令的使用方法,以及这个命令的说明事项 locate 定位文件和目录 whatis 寻找某个命令的含义 6.1 man命令 man命令用来查询和解释一 ...

  2. Oracle VirtualBox 模拟Android系统 素材

    Android to x86 下载地址: http://www.android-x86.org/download VirtualBox 下载地址: https://www.virtualbox.org ...

  3. Unreal Engine 虚幻引擎宣布对开发者免费

    虚幻引擎4现在可供每个人免费使用,而且所有未来的更新都将免费!您可以下载引擎并将其用于游戏开发的各个方面,包括教育.建筑以及可视化,甚至虚拟现 实.电影和动画. 当您发布游戏或应用时,在您的每个游戏在 ...

  4. PHPSTORM 与 Xdebug 配合调试

    基本的配置可以参考网上的文档, 浏览器中装插件(xdebug)或直接在请求中加上如下的参数也可启动调试 ?XDEBUG_SESSION_START=PHPSTORM

  5. Building nginx from Sources(从源代码安装nginx)

    Building nginx from Sources(从源代码安装nginx) The build is configured using the configure command.  安装用配置 ...

  6. (转)log4j:WARN No appenders could be found for logger 解决方案

    我们在使用Log4j的时候,总是出现: log4j:WARN No appenders could be found for logger (org.apache.ibatis.logging.Log ...

  7. Spring Batch的事务– Part 3: 略过和重试

    原文:https://blog.codecentric.de/en/2012/03/transactions-in-spring-batch-part-3-skip-and-retry/ This i ...

  8. 苹果官网 demo The Elements 阅读随笔

    The Elements https://developer.apple.com/library/ios/samplecode/TheElements/Introduction/Intro.html# ...

  9. 轻松学习Linux之理解进程的管理与控制

    本文出自 "李晨光原创技术博客" 博客,谢绝转载!

  10. quartz中关键类

    job job是一个接口,你对某一类job的定义,可以通过实现该接口来实现.例如为销售报告定义一个SalesReportJob,包含变量name. job可以使用的几个注解 @DisallowConc ...