Maximum Score

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83008#problem/J

Description

Ron likes to play with integers. Recently he is interested in a game where some integers are given and he is allowed to permute them. His point will be calculated from the permutation made by him. Ron knows that he will get as many candies as his point, so he wants to permute the numbers to maximize his point.
Say, Ron has got n integers {x1, x2, . . . , xn} and (xi1, xi2, . . . , xin) is the permutation made by him. His point will be the sum of the score of all integers. The score of an individual number xiw in that permutation is calculated by the length of the longest subsequence (Let us consider xj1, xj2, …, xjm as the subsequence where 1 ≤ j1 < j2 < . . . < jm ≤ n) you can form with the following constraints:
1. There exists an integer k such that 1 ≤ k ≤ m and jk = iw.
2. xj1 ≤ xj2 ≤ . . . ≤ xjk−1 ≤ xjk ≥ xjk+1 ≥ . . . ≥ xjm−1 ≥ xjm.
Therefore, the score of xiw in that permutation will be m. Say, (1, 4, 3) is a permutation made by Ron using the numbers {1, 3, 4}. For this permutation, score of 1 is 1 with subsequence (1), score of 4 is 3 with subsequence (1, 4, 3) and score of 3 is 2 with subsequence (1, 3). So, Ron’s point is 6 for this permutation.
Ron is not sure how to achieve the maximum point and he is also wondering about the number of different permutations which generate that maximum value of point. You need to help Ron to calculate these two values. A permutation (x1, x2, . . . , xn) is different from another permutation (y1, y2, . . . , yn) if there exists an integer i such that 1 ≤ i ≤ n and xi is not equal to yi
.

Input

The first line of input contains a single integer T (1 ≤ T ≤ 200), which denotes the number of test cases to follow. For each test case, there will be two lines of input. The first line contains a single integer, p (1 ≤ p ≤ 105 ). The second line contains p pairs of integers. In each pair, there are two integers vi and fi (1 ≤ vi , fi ≤ 105 ) which indicate that the value vi is present fi times among the given numbers.
Therefore, f1 + f2 + . . . + fp = n, where n is the total number of integers given to Ron. All the values of vi will be distinct.

Output

For each case, in a separate line, print the case number and the maximum sum of scores and the number of permutations to achieve that sum of scores. As the number of permutations can be quite large, print it modulo 1000000007 (109 + 7). Follow Sample Input and Output for details. The value of the maximum sum of scores will fit in 64-bit unsigned integer.

Sample Input

2
2
121 1 22 1
2
71 2 35 1

Sample Output

Case 1: 3 2
Case 2: 7 2

HINT

题意

一个数的分数的定义,就是以这个点能够往左右延生多长,不一定要连续!

题解:

第一问很简单,随便想想就出来了

第二问比较麻烦,首先我们先把最小的扔在那儿,然后我们插空法就吼了,注意,最大的数一定得挨在一起,掌握这个观点就好了

代码

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 2000001
#define mod 1000000007
#define eps 1e-9
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** pair<ll,ll> P[maxn];
int main()
{
//test;
int t;
cin>>t;
for(int cas=;cas<=t;cas++)
{
memset(P,,sizeof(P));
int p=read();
for(int i=;i<p;i++)
cin>>P[i].first>>P[i].second;
sort(P,P+p);
unsigned long long ans=,ans2=;
unsigned long long sum=;
for(int i=;i<p;i++)
{
sum+=P[i].second;
if(i!=p-)
{
ans2=(ans2*(P[i].second+));
if(ans2>mod)
ans2%=mod;
}
ans+=P[i].second*sum;
}
printf("Case %d: %llu %llu\n",cas,ans,ans2%mod);
}
}

UVA 12906 Maximum Score 排列组合的更多相关文章

  1. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  2. UVA12906 Maximum Score (组合)

    对于每个元素,最理想的情况就是都在它的左边或者右边,那么sort一下就可以得到一个特解了,然后大的中间不能有小的元素,因为如果有的话,那么无论选小的还是选大的都不是最优.对小的元素来说,比它大的元素在 ...

  3. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

  4. UVa Problem 10132 File Fragmentation (文件还原) 排列组合+暴力

    题目说每个相同文件(01串)都被撕裂成两部分,要求拼凑成原来的样子,如果有多种可能输出一种. 我标题写着排列组合,其实不是什么高深的数学题,只要把最长的那几个和最短的那几个凑一起,然后去用其他几个验证 ...

  5. UVa 12712 && UVaLive 6653 Pattern Locker (排列组合)

    题意:给定 一个n * n 的宫格,就是图案解锁,然后问你在区间 [l, r] 内的所有的个数进行组合,有多少种. 析:本来以为是数位DP,后来仔细一想是排列组合,因为怎么组合都行,不用考虑实际要考虑 ...

  6. HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)

    Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  8. 【leetcode】1255. Maximum Score Words Formed by Letters

    题目如下: Given a list of words, list of  single letters (might be repeating) and score of every charact ...

  9. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

随机推荐

  1. ERROR:The requested URL could not be retrieved解决方法

    ERROR 错误 The requested URL could not be retrieved 您所请求的网址(URL)无法获取 While trying to retrieve the URL: ...

  2. OFBIZ文章

    0. OFBIZ Tutorials 1. A Tour of OFBiz 2. Entities and Services - Data Models and Business Logic in O ...

  3. 【LeetCode 234】Palindrome Linked List

    Given a singly linked list, determine if it is a palindrome. 思路: 用快慢指针找到链表中点,反转后半部分链表,然后与前半部分进行匹配,随后 ...

  4. mssql 容易掉进的坑

    1.     重复 使用 into #tabel(不是在开头使用insert into ) 会报错   if  1=1 begin  select * into #tabel from product ...

  5. JavaScript操作DOM的那些坑

    js在操作DOM中存在着许多跨浏览器方面的坑,本文花了我将近一周的时间整理,我将根据实例整理那些大大小小的“坑”. DOM的工作模式是:先加载文档的静态内容.再以动态方式对它们进行刷新,动态刷新不影响 ...

  6. 字符串和数组中split().toString(),join(),splice(),slice(),substr()和substring()

    <!Doctype html> <head> <mate charset="utf-8"> <title>string change ...

  7. SSO单点登录在web上的关键点 cookie跨域

    概述 其实WEB单点登录的原理挺简单的,抛开那些复杂的概念,简单来讲讲如何实现一个最基本的单点登录 首先需要有两个程序 例如:http://www.site-a.com 我们简称A http://ww ...

  8. Hadoop2.2.0 手动切换HA环境搭建

    ssh-copy-id -i hadoop5含义: 节点hadoop4上执行ssh-copy-id -i hadoop5的含义是把hadoop4上的公钥id_rsa.pub的内容追加到hadoop5的 ...

  9. RSS阅读器&BT sync

    ①RSS阅读器? 答:RSS阅读器是一种软件或是说一个程序,这种软件可以自由读取RSS和Atom两种规范格式的文档,且这种读取RSS和Atom文档的软件有多个版本,由不同的人或公司开发,有着不同的名字 ...

  10. 【全国互虐】Fibonacci矩阵

    orz啊又被屠了 人生如此艰难 题意: 给定一个k维的n^k的超立方体 超立方体的元素Ai1,i2,...,ik 的值为f(i1+i2+...+ik-k+1) f为斐波那契数列 求该超立方体的所有元素 ...