BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://www.lydsy.com/JudgeOnline/problem.php?id=3930
Description
Input
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
HINT
题意
题解:
记f[i]为gcd恰好为K*i的选数方案数
那么对于每一个i 记L为 a/(K*i) 上取整 R为 b/(K*i) 那么他的方案数就为
(R-L+1) ^ N - (R-L+1) 再减去f[a*i] (a = 1,2,3....)
最后的f[1]即为答案 注意若a/K上取整 == 1 那么全部选K也是一种方案 需要+1
转自:http://blog.csdn.net/shiyukun1998/article/details/44922391
讲的很清楚
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 100001
#define mod 1000000007
#define eps 1e-9
int Num;
char CH[];
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//**************************************************************************************
int pow_mod(int x, int k)
{
int ans=;
while(k) {
if(k & ) ans = 1LL * ans * x % mod;
x = 1LL * x * x % mod;
k >>= ;
}
return ans;
}
int ans[maxn];
int main()
{
//test;
int n,k,a,b;
n=read(),k=read(),a=read(),b=read();
int l=a/k,r=b/k;
if(a%k)l++;
for(int i=maxn-;i>=;i--)
{
int L=l/i,R=r/i;
if(l%i)L++;
if(l<=r)
{
ans[i]=pow_mod(R-L+,n);
ans[i]=(ans[i]-(R-L+)+mod)%mod;
for(int j=i*;j<maxn;j+=i)
ans[i]=(ans[i]-ans[j]+mod)%mod;
}
}
if(l==)
ans[]=(ans[]+)%mod;
P(ans[]);
}
BZOJ 3930: [CQOI2015]选数 递推的更多相关文章
- 3930: [CQOI2015]选数|递推|数论
题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
随机推荐
- 请教下 Yii 和 Ajax来验证用户名是否存在
添加一个 Custom, Model页面: CustomForm中: public function rules() { // 使用ajax 校验数据 return array( array('nam ...
- memcache、memcached、groupcache的区别
对PHP语言来说,PHP使用memcache有两个模块,分别叫memcache和memcached,他们的区别看下表: 参考:http://hi.baidu.com/tony_wd/item/605e ...
- For循环List中删除正确的方式
单线程public class Test { public static void main(String[] args) { ArrayList<Integer> list = new ...
- MySQL安装(图文详解)
下面的是MySQL安装的图解,用的可执行文件安装的,详细说明了一下!打开下载的mysql安装文件mysql-5.0.27-win32.zip,双击解压缩,运行“setup.exe”,出现如下界面 my ...
- Thrift框架介绍
1.前言 Thrift是一个跨语言的服务部署框架,最初由Facebook于2007年开发,2008年进入Apache开源项目.Thrift通过一个中间语言(IDL, 接口定义语言)来定义RPC的接口和 ...
- wpf4 文字 模糊 不清晰 解决方法
在窗口或控件上设置字体属性就可以了,如下:<UserControl x:Class="..." xmlns="http://schemas. ...
- erlang observer工具
1.服务器安装wxWidgets,之前需要装gtk+库 2.客户端安装otp_win64_17.5.exe 3.快捷方式点属性,在D:\erl6.4\bin\werl.exe后面加上参数 -setco ...
- Linux入门视频
为了方便新手学习Linux,本人专门录制了以下Linux初级视频方便学习,本系列多媒体教程已完成的博文: 轻松学习Linux之入门篇 http://chenguang.blog.51cto.com/3 ...
- 如何用 redis 造一把分布式锁
基本概念 锁 wiki:In computer science, a lock or mutex (from mutual exclusion) is a synchronization mechan ...
- C++11常量表达式
[C++11之常量表达式] 关键字:constexpr: 中文学名:常量表达式. constexpr用于把运行期计算放置在编译期. 使用constexpr有3个限制: 1.函数中只能有一个return ...