Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 12521    Accepted Submission(s): 8838
Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.



"The second problem is, given an positive integer N, we define an equation like this:

  N=a[1]+a[2]+a[3]+...+a[m];

  a[i]>0,1<=m<=N;

My question is how many different equations you can find for a given N.

For example, assume N is 4, we can find:

  4 = 4;

  4 = 3 + 1;

  4 = 2 + 2;

  4 = 2 + 1 + 1;

  4 = 1 + 1 + 1 + 1;

so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627

整数拆分无限取,跟着包子做的题,就当做模板来用吧。

#include <stdio.h>
#define maxn 122 int c1[maxn], c2[maxn]; int main()
{
int n, i, j, k;
while(scanf("%d", &n) != EOF){
for(i = 0; i <= n; ++i){
c1[i] = 1; c2[i] = 0;
}
for(i = 2; i <= n; ++i){
for(j = 0; j <= n; ++j)
for(k = j; k <= n; k += i)
c2[k] += c1[j];
for(k = 0; k <= n; ++k){
c1[k] = c2[k]; c2[k] = 0;
}
}
printf("%d\n", c1[n]);
}
return 0;
}

HDU1028 Ignatius and the Princess III 【母函数模板题】的更多相关文章

  1. 【母函数】hdu1028 Ignatius and the Princess III

    大意是给你1个整数n,问你能拆成多少种正整数组合.比如4有5种: 4 = 4;  4 = 3 + 1;  4 = 2 + 2;  4 = 2 + 1 + 1;  4 = 1 + 1 + 1 + 1; ...

  2. Ignatius and the Princess III(母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  3. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. hdu1028 Ignatius and the Princess III(递归、DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Sample Ignatius and the Princess III (母函数)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028Ignatius and the Princess III(母函数简单题)

     Ignatius and the Princess III Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  7. ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)

    Description "Well, it seems the first problem is too easy. I will let you know how foolish you ...

  8. hdu1028 Ignatius and the Princess III

    这是道典型的母函数的题目,可以看看我的母函数这一标签上的另一道例题,里面对母函数做了较为详细的总结.这题仅贴上代码: #include"iostream" using namesp ...

  9. HDU-1028 Ignatius and the Princess III(生成函数)

    题意 给出$n$,问用$1$到$n$的数字问能构成$n$的方案数 思路 生成函数基础题,$x^{n}$的系数即答案. 代码 #include <bits/stdc++.h> #define ...

随机推荐

  1. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  2. head 命令

    head 与 tail 就像它的名字一样的浅显易懂,它是用来显示开头或结尾某个数量的文字区块,head 用来显示档案的开头至标准输出中,而 tail 想当然尔就是看档案的结尾. 1.命令格式: hea ...

  3. 【转】为drupal初学者准备的12个精品课程

    下面是一些网上免费的drupal教程,这些教程将对初学者和那些从别的CMS转向drupal的开发者非常有帮助.初级教程 1.在开始用drupal之前,你要知道一些基本的东西,内容很简单,但有些还是值得 ...

  4. 图的邻接表存储表示(C)

    //---------图的邻接表存储表示------- #include<stdio.h> #include<stdlib.h> #define MAX_VERTEXT_NUM ...

  5. iOS学习笔记之回调(二)

    写在前面 上一篇学习笔记中简单介绍了通过目标-动作对实现回调操作:创建两个对象timer和logger,将logger设置为timer的目标,timer定时调用logger的sayOuch函数.在这个 ...

  6. STL六大组件之——算法小小小小的解析

    参考自侯捷的<stl源码剖析> stl算法主要分为非可变序列算法(指不直接修改其所操作的容器内容的算法),可变序列算法(指可以修改它们所操作的容器内容的算法),排序算法(包括对序列进行排序 ...

  7. Python异常记录

    1.常用异常名 AttributeError 调用不存在的方法引发的异常. EOFError 遇到文件末尾引发的异常. ImportError 导入模块出错引发的异常. IndexError 列表越界 ...

  8. BITED-Windows8应用开发学习札记之三:如何在Win8应用中实现数据绑定

    在微软官方提供的资源中,我们可以看到SampleDataSource.cs已经拥有了定义好了相应的数据结构以及实现类: 建立本地数据 由于我们已经有数据以及相应的数据类,我们需要做的仅仅是将数据放进数 ...

  9. Ubuntu 上安装R

    1. 编辑 /etc/apt/sources.listsudo cp /etc/apt/sources.list /etc/apt/sources.list.backupsudo gedit sour ...

  10. Python线程

    原文出处: AstralWind 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样). ...